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Abstract: The aim of this work was to study the Nipah virus ( NiV) infection, a newly emerging zoonosis that causes 
severe disease in both animals and humans. Human population have been plagued by diseases of various types and 
origins. Zoonotic disease which have the capability of been transmitted from specie to another or to other animals. 
According to WHO, Nipah virus infection was ϔirst recognized in a large outbreak of 265 suspected cases in 
peninsular Malaysia during September 1998 to April 1999. These pathogens typically survive in a reservoir host. 
The lists of possible reservoir hosts capable of transmitting disease to humans are apes, insects, rodents, and bats. 
The diseases are then passed to humans who come in contact with an infected animal through bites or scratches, 
an infected animal’s environment, or animal secretions such as saliva, faeces, or mucus. Nipah virus is an enveloped, 
negative-sense, single-stranded RNA virus in the family Paramyxoviridae, genus Henipavirus. The name of the virus 
and disease was from the village of “Sungai Nipah” in Malaysia where the ϔirst human cases lived. Nipah virus 
invade its host by is by inducing syncytial cell formation which spread rapidly through the vascular tissue of the 
infected host. Incubation time is usually short between 2 and 10 days. The Nipah virus primarily attacks the 
respiratory system, which is supported by the ϔinding of high concentrations of viral antigens are found in the 
respiratory tract and lung epithelium. 
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INTRODUCTION    
Many applications of survival and reliability engineering require lifetime models with 
bathtub-shaped failure rate functions. The Weibull distribution is one of the most commonly 
used lifetime models in reliability and survival analysis. However, the FR function of the 
Weibull distribution can only be increasing, constant, or decreasing. Therefore, the Weibull 
distribution is not capable of modeling lifetime data with a bathtub-shaped FR function. An 
additive Chen-Weibull distribution is a continuous lifetime model, proposed and studied by 
Tien and Radim (2020). The model was proposed by combining the Weibulland and Chen 
distributions together. This situation is of particular interest in applications where the failure 
time of a system with two or more failure modes must be modeled. One component, 
representing the ϐirst failure mode, follows the Chen distribution, and the other follows the 
Weibull distribution. Bayesian analysis is one of the most commonly used methods for 
estimating the unknown parameters of any probability distribution or model. Bayesian 
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inference is a method of statistical inference in which the Bayes theorem is used to update 
the probability of a hypothesis as more evidence or information becomes available. Various 
researchers in the literature have used this method for estimating the unknown parameters 
of any proposed models. Example: Chris and Noor (2012) studied Bayesian analysis of the 
survival function and failure rate of the Weibull distribution with censored data. The Bayes 
estimator is obtained under three different loss functions. (Vikas et al., 2017) studied 
Bayesian and classical methods for estimating the parameter of the power Lindley (PL) 
distribution with application to waiting time data. Ahmad and Ahmad (2013) considered a 
Bayesian approach for the estimation of the scale parameter of a two-parameter Weibull 
distribution with a known shape. They obtained Baye’s estimator of the Weibull distribution 
by using Jeffery’s and an extension of Jeffery’s prior under the linear exponential loss 
function and the symmetric loss function. Kamram et al. (2019) considered Bayesian analysis 
of a three-parameter Frechet distribution with medical applications. Al Omari (2016) studied 
Bayesian using the MCMC of the Gompertz distribution based on interval-censored data with 
three loss functions. Ahmad and Ahmad (2013) studied the Bayesian approach for two-
parameter Weibull distributions using R software. Tien and Radim (2020) used Bayesian and 
classical estimation methods for estimating the four unknown parameters of the additive 
Chen Weibull distribution. In the Bayesian approach, a non-informative gamma prior under 
the square error loss function (SELF) was employed. The maximum likelihood (ML) methods 
of estimation were used for the classical approach. (Abbas et al., 2021) estimated the four 
unknown parameters of the additive Chen-Weibull (ACW) distribution using a Bayesian 
approach, considering the half-Cauchy prior distribution under the square error loss 
function (SELF) and the maximum product of spacing (MPS) method of estimation. The CDF 
of the additive Chen-Weibull (ACW) distribution with four parameters 𝜽 = (𝛼, 𝛽, 𝛾, 𝜆)ᇱ is 
deϐined by  
   𝐹(𝑥) = 1 − 𝑒ఒ(ଵି௘ೣം)ି(ఈ௫)ഁ

,           (1) 
Where 𝑥 ≥ 0, 𝛼, 𝛽, 𝛾 > 0, 𝜆 ≥ 0 
The probability density function (PDF) is deϐined by 
 𝑓(𝑥) = (𝜆𝛾𝑥ఊିଵ𝑒௫ఊ + 𝛼𝛽൫𝛼𝑥)ఉିଵ൯𝑒ఒ(ଵି௘ೣം)ି(ఈ௫)ഁ

,         (2) 
Where 𝑥 ≥ 0 
And the failure rate and reliability functions are respectively  
   ℎ(𝑥) = (𝜆𝛾𝑥ఊିଵ𝑒௫ఊ + 𝛼𝛽(𝛼𝑥)ఉିଵ  (3) 
And  
   𝑅(𝑥) = 𝑒ఒ(ଵି௘ೣം)ି(ఈ௫)ഁ

  (4) 
          This article explores various Bayesian analyses for estimating four unknown 
parameters of the additive Chen-Weibull (ACW) distribution using exponential distribution 
prior under the square error loos function. The study presents the maximum product of the 
spacing method of estimation (MPSE) and Bayes estimators for estimating four unknown 
parameters of the ACW model, comparing their effectiveness using Kolmogorov-Smirnov test 
statistics. 
 
MATERIAL AND METHODS 
Estimation Using Maximum Product of Spacing Method 
The discussion centered on the maximum product of the spacing method for estimating the 
parameters of any probability distribution. In this section, the method of maximum product 
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of spacing (MPS) introduced by Chen and Amin (1979) will be used to estimate the unknown 
parameters of the additive Chen-Weibull (ACW) distribution. Let  be i.i.d. random variables 
from the additive Chen-Weibull distribution, and let  be the corresponding order statistics. 
The cumulative distribution function (CDF) of the additive Chen-Weibull (ACW) 
distribution with four parameters  𝜽 = (𝛼, 𝛽, 𝛾, 𝜆)் is defined by  
 
𝐹(𝑥) = 1 − 𝑒ఒ(ଵି௘ೣം)ି(ఈ௫)ഁ

,       𝑥 ≥ 0, 𝛼, 𝛽, 𝛾 > 0, 𝜆 ≥ 0             (5) 
  Then, we deϐine spacing as  
𝐷௜ = 𝐹(𝑋௜) =  1 − 𝑒ఒ(ଵି௘ೣ೔ം)ି(ఈ௫)ഁ

                              (6) 
𝐷௡ା௜ = 1 − 𝐹(𝑋௜) = 1 −  1 − 𝑒ఒ(ଵି௘ೣ೔ം)ି(ఈ௫)ഁ

 
And the general term of spacing is given by  

𝐷௜ = 𝐹(𝑋௜) − 𝐹൫𝑋(௜ିଵ)൯ 
                                    Such that ∑ 𝐷௜ = 1௡

௜  
In method of product spacing, we choose𝜽such that it maximizes the product of spacing or 
in other words it maximizes the geometric mean of spacing i.e.  

𝑀 = ∏ 𝐷௜

భ

೙శభ௡ାଵ
௜ୀଵ                               (7)                                                                        

We deϐined the term S which is obtained by taking log on both side of the equation (8) i.e Set 
 𝑆 = 𝑙𝑜𝑔𝑀  we get 

𝑆 =
1

(𝑛 + 1)
෍ 𝑙𝑜𝑔𝐷௜

௡ାଵ

ଵୀଵ

 

𝑆 =  
1

(𝑛 + 1)
෍ log ( 1 − 𝑒ఒ(ଵି௘ೣ೔ം)ି(ఈ௫೔)ഁ

− 1 − 𝑒ఒ൫ଵି௘
ೣ(೔షభ)ം

൯ି(ఈ௫(೔షభ))ഁ

௡ାଵ

௜ୀଵ

) 

                    𝑆 =
ଵ

(௡ାଵ)
∑ 𝜆(1 − 𝑒௫೔ఊ) − (𝛼𝑥௜)

ఉ − 𝜆(1 − 𝑒(௫೔షభ)ം௡ାଵ
௜ାଵ )𝛼(𝑥௜ିଵ)ఉ       (8) 

 
To obtain the normal equations for the unknown parameters, we differentiate partially 
equation (8) with respect to the four (4) parameters (𝛼, 𝛽, 𝛾 and 𝜆) and equate them to zero. 
The estimators for 𝛼, 𝛽, 𝛾 and 𝜆 can be obtained by 
 

𝑑𝑠

𝑑𝛼
= −

1

(𝑛 + 1)
෍(𝑥௜)

ఉ + 𝜆 − 𝜆𝑒(௫೔షభ)ം

௡ାଵ

௜ୀଵ

(𝑥௜ିଵ)ఉ = 0 

𝑑𝑠

𝑑𝛽
= −

1

(𝑛 + 1)
෍(𝛼𝑥௜)ఉ − 𝜆 − 𝜆𝑒(௫೔షభ)ം

𝛼(𝑥௜ିଵ)ఉିଵ = 0

௡ାଵ

௜ୀଵ

 

𝑑𝑠

𝑑𝛾
= −

1

(𝑛 + 1)
෍ 𝑥௜𝜆𝑒௫೔ఊ + 𝛼(𝑥௜ିଵ)ఉ𝛼(𝑥௜ିଵ)𝑒(௫೔షభ)ఊ = 0

௡ାଵ

௜ୀଵ

 

𝑑𝑠

𝑑𝜆
= −

1

(𝑛 + 1)
෍ 1 −

௡ାଵ

௜ୀଵ

𝑒௫೔ఊ + 𝛼(𝑥௜ିଵ)ఉ(1 − 𝑒(௫೔షభ))ఊ = 0 
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 The above expressions cannot be solve analytically, therefore, the iterative procedure 
techniques (conjugate-gradient algorithm solution) will be used in order to obtain the 
estimate of the parameters of ACW distributions. 
Bayesian Estimation Under Exponential Prior 
Suppose 𝑋: 𝑥ଵ, 𝑥ଶ, … 𝑥௡ be a random sample from the additive Chen-Weibull (ACW) 
distribution with probability density function (PDF)  

𝑓(𝑥) = (𝜆𝛾𝑥ఊିଵ𝑒௫ఊ + 𝛼𝛽൫𝛼𝑥)ఉିଵ൯𝑒ఒ(ଵି௘ೣം)ି(ఈ௫)ഁ
,         𝑥 ≥ 0. 

The corresponding likelihood function can be deϐined as 
𝐿(𝑋|𝛼, 𝛽, 𝛾, 𝜆) = 

[∏ ቀ𝜆𝛾𝑥௜
ఊିଵ

𝑒௫೔
ം

+ 𝛼𝛽൫𝛼𝑥௜)
ఉିଵ൯ቃ௡

௜ୀଵ exp ൣ− ∑ (𝜆(1 − 𝑒௜
௫ം௡

௜ୀଵ ൯ + ൫𝛼𝑥௜)
ఉିଵ൯]                          (9) 

And the log-likelihood is deϐined as  
log 𝐿(𝑌|𝛼, 𝛽, 𝛾, 𝜆) = 𝛾 − 1 ∑ log ( 𝜆𝛾𝑥௜

௡
௜ୀଵ ) + 𝑥௜

ఊ
+ 𝛽 − 1log (𝛼𝛽) + log (𝛼𝑥௜) − ∑ (𝜆(1 −௡

௜ୀଵ

𝑒௫೔
ം

) + 𝛽log (𝛼𝑥௜)                             (10)    
                                                                                                           
In this section we consider the Bayesian estimation of the unknown parameters of additive 
Chen-Weibull (ACW) distribution parameters (𝛼, 𝛽, 𝛾 and 𝜆). The Bayes estimate is 
considered under the assumption that a random variables (𝛼, 𝛽, 𝛾 and 𝜆) have an 
independent exponential prior distribution. Assumed that 𝛼 ~ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (𝛿ଵ),  
𝛽 ~ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (𝛿ଶ)𝛾 ~ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (𝛿ଷ)  and   𝜆 ~ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (𝛿ସ). 
 Where 𝛿ଵ,𝛿ଶ, 𝛿ଷ and 𝛿ସ are the hypeparameters. 
Then the prior density of each four (4) unknown parameters can be given as 
 
𝑃(𝛼) = 𝛿ଵ, 𝑒ఋభఈ𝛿ଵ > 0 𝑃(𝛽) =  𝛿ଶ𝑒ఋమఉ , 𝛿ଶ > 0𝑃(𝛾) =  𝛿ଷ𝑒ఋయఊ,𝛿ଷ > 0𝑃(𝜆) =  𝛿ସ𝑒ఋరఒ𝛿ସ > 0 
 
 Then joint prior density function of the four parameters can be written as follows: 
 

𝑃(𝛼, 𝛽, 𝛾, 𝜆)  ∝  𝑒ఋభఈାఋమఉାఋయఊାఋరఒ 
 
Based on the likelihood function above, and by Bayes’ rules, the joint posterior distribution 
of 𝛼, 𝛽, 𝛾 and 𝜆 given the observed data X is deϐined as  
 
𝑃(𝛼, 𝛽, 𝛾, 𝜆|𝑋) ∝ 𝐿(𝑋|𝛼, 𝛽, 𝛾, 𝜆)𝑃(𝛼, 𝛽, 𝛾, 𝜆)                             (11) 
 
Taking the log of the prior densities, the logarithm of the unnormalized joint posterior 
density is calculated according to the Bayes’ rule as:  
        
log 𝑝 𝑃(𝛼, 𝛽, 𝛾, 𝜆|𝑋) ∝ log 𝐿 (𝑋|𝛼, 𝛽, 𝛾, 𝜆) + log 𝑝 ൫𝑒ఋభఈ൯ + log 𝑝( 𝑒ఋమఉ) + logp(𝑒ఋయఊ) +

  logp(𝑒ఋరఒ)                                  (12) 
 
To get the correct posterior inference for the positive parameters in the situation that 
involves optimization of the log-posterior, itself a difϐicult numerical problem. The package 
LaplacesDemonfavour unconstrained parameterization by making the log-transformation of 
the positive parameter. In fact, working on log scale make computation numerically more 
stable (Shehla, 2016).      
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Estimation under square error loss function 
The Bayesian estimates of the four parameters of additive Chen-Weibull (ACW) distribution 
assuming independent exponential prior under square error loss function (SELF) is given by 
 
𝛼ො = ∫ 𝛼𝑃(𝛾, 𝛼, 𝜆, 𝛽|𝑋)𝑑𝜃 𝛽መ = ∫ 𝛽𝑝( (𝛾, 𝛼, 𝜆, 𝛽|𝑋) 𝑑𝜃                             (13)          
𝛾ො = ∫ 𝛾𝑝( (𝛾, 𝛼, 𝜆, 𝛽|𝑋) 𝑑𝜃𝜆መ = ∫ 𝜆𝑝( (𝛾, 𝛼, 𝜆, 𝛽|𝑋) 𝑑𝜃                             (14) 
 
As we can see from the above expressions that, the Bayes estimator cannot be analytically 
computed through the posterior means. Therefore, Laplace approximation and Monte Carlo 
Markov Chain (MCMC) will be used to approximate the posterior densities of the four 
unknown parameters of additive Chen-Weibull distribution. 
        The inϐluence of prior distribution on posterior inference decreases as sample size n 
increase. These ideas are sometimes referred to as asymptotic theory. The large sample 
results are not actually necessary for performing Bayesian data analysis but are often useful 
for quick references and as starting points for iterative simulation algorithms (Gelman et al., 
2004). A remarkable method of asymptotic approximation is the Laplace approximation 
(Tierney, 1986 &1989) which currently approximates the unimodal posterior moments and 
marginal posterior densities in many cases. A brief and informal description of Laplace 
approximation method is as follows: 
 Suppose  −ℎ(𝜃) is a smooth, bounded and unimodal function with a maximum at 𝜃෠ where 𝜃 
is a scalar and we wish to evaluate the integral 
 
1 = ∫ 𝑞(𝜃)exp൫−𝑛ℎ(𝜃)൯𝑑𝜃, 𝜃 ∈ 𝛩         (15) 
 
As presented by [22], Laplace’s method involves the Taylor’s series expansion of 𝑞 and 
ℎ about𝜃෠. As ℎᇱ൫𝜃෠൯ = 0, it follows that 

ℎ(𝜃) = ℎ൫𝜃෠൯ + ൫𝜃 − 𝜃෠൯
ᇱ
ℎᇱ൫𝜃෠൯ +

1

2
(𝜃 − 𝜃෠)ଶℎᇱᇱ൫𝜃෠൯ + ⋯ 

= ℎ൫𝜃෠൯ +
ଵ

ଶ 
 (𝜃 − 𝜃෠)ଶℎᇱᇱ൫𝜃෠൯ + ⋯            (16) 

𝑞(𝜃) = 𝑞൫𝜃෠൯ +
1

2
(𝜃 − 𝜃෠)ଶ𝑞ᇱᇱ൫𝜃෠൯ + ⋯ 

𝐼 ≈ 2(𝜋)ଵ ଶ⁄ ೙ିଵ ଶ⁄ ഑𝑞(𝜃෠)exp[−𝑛ℎ൫𝜃෠൯]                             (17) 

Where 𝜎 = [
డమ௛

డఏమ
|ఏ෡]

ିଵ
ଶൗ  

 
To calculate moments of the posterior distributions, we need to evaluate expression such as:  

𝐸{𝑔(𝜃) =
∫ ௚(ఏ) ୣ୶୮{ି௡௛(ఏ)}ௗఏ

∫ ୣ୶୮{ି௡௛(ఏ)}ௗఏ
                             (18)           

                           
Where exp{−𝑛ℎ(𝜃)} = 𝐿(𝜃|𝑦)𝑝(𝜃)by [22] 
 
Upon applying (17) to both the numerator and denominator of (18) separately (with 𝑞 = to 
𝑔 and 𝑞 = 1), a ϐirst order approximation  
 

𝐸{𝑔(𝜃)} = 𝑔(𝜃෠){1 + 0(𝑛ିଵ)} 
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Easily emerges. Thus, the Laplace approximation is of order 0(𝑛ିଵ) uniformly on any 
neighborhood of the mode. This means that it should provide a good approximation in the 
tails of the distribution also (Tierney 1989). 
        The independent Metropolis-Hasting algorithm is a general MCMC algorithm introduced 
by Hasting (1970) will be used to simulate a random sample from the posterior distribution. 
The implementation of independent Metropolis-Hasting algorithm and Laplace 
approximation are given below. Let as assume a target distribution 𝒑(𝜽|𝒚)from which we 
wish to generate a sample of size 𝑇. the metropolis-Hastings algorithm can be described by 
the following iterative steps; where 𝜽(𝒕) is the vector of generated values in 𝑡 iteration of the 
algorithm.  
 

Algorithm 1 
Given the marginal posterior distribution 𝑃((𝛾|𝛼, 𝜆, 𝛽, 𝑌), 
𝑃((𝛼|𝛾, 𝜆, 𝛽, 𝑌),𝑃((𝛽|𝛾, 𝛼, 𝜆, 𝑌), 𝑃((𝜆|𝛾, 𝛼, 𝛽, 𝑌) and sample size N: 
Step 1: select a starting value of the chain𝛾(଴), 𝛼(଴), 𝛽(଴), 𝜆(଴). 
Step 2: set 𝑚 = 1. 
Step 3: Using the M-H, generate 𝛾(௠) from 𝑃(൫𝛾ห𝛼(௠ିଵ), 𝜆(௠ିଵ), 𝛽(௠ିଵ)𝑌൯. 
Step 4: Using the M-H, generate  𝛼(௠) from 𝑃൫𝛼ห𝛾(௠), 𝜆(௠ିଵ), 𝛽(௠ିଵ), 𝑌൯. 
Step 5: Using the M-H generate  𝛼(௠) from𝑃൫𝛽ห𝛾(௠), 𝛼(௠), 𝜆(௠ିଵ), 𝑌൯. 
Step 6: Using the M-H generate 𝜆(௠) from𝑃(൫𝜆ห𝛾(௠), 𝛼(௠), 𝛽(௠), 𝑌൯. 
Step 7: set 𝑚 = 𝑚 + 1. 
Step 8: Repeat step 2 to 7until 𝑚 = 𝑁 to obtain the samples of 𝛾, 𝛼, 𝜆 and 𝛽 
With size𝑁, respectively. 
 

DATA 
A two real data set will be used for illustration purpose that is; Aarset and Meeker-Escobar 
data with a random sample of 50 lifetime’s devices and the failure and running times of 30 
devices respectively. Two failure modes were observed for these data. 
RESULT AND DISCUSSION  
 
This section compares Bayesian and MPSE estimation methods of the additive Chen-Weibull 
(ACW) distribution on two real reliability data sets, using the Kolmogorov-Smirnov test for 
comparison. 
Meeker-Escobar data 
Table 1. Meeker-Escobar data 

2         10      13     23      23     28      30       65     80     88 
106     143    147   173    181   212    245     247   261   266 
275     293    300   300    300   300    300     300   300   300 

 
Table 1. Represent the Meeker-Escobar data with a failure and running times of 30 devices. 
Two failure modes were observed for this dataset. Many authors in the literature used this 
data for illustration purpose and the most recent studies are given by (Tien and Radim, 
2020), Almaliki et al., (2013), Bo He et al., (2016) and Mohammed et al., (2019). 
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Figure 1. The empirical scaled TTT-transform plot for Meeker-Escobar data 
 Source: Author’s computation aided by R package V 3.6.3 
 
Fig. 1. Provides the empirical scaled TTT-transform plot for Meeker-Escobar data sets. From 
this plot we can observed that the Meeker-Escobar data have a bathtub-shaped failure rate 
function.The independent Metropolis-Hasting algorithm (algorithm 1) in MCMC is used to 
simulate a random sample from each of the marginal posterior density of four unknown 
parameters to approximate the posterior distribution of ACW model. 
 
Table 2. Bayes estimates (assuming exponential prior) for the parameters 
 When fitting ACW model to Meeker-Escobar dataset 

Parameters Bayes SD Median Bayes 95%C.I 
𝛾 0.25985 0.01452 0.25957 [0.23221, 0.28838] 
𝛼 0.00333 0.00000 0.00333 [0.00332, 0.00334] 
𝜆 0.01626 0.00590 0.01542 [0.00758, 0.03018] 
𝛽 290.511 7.84002 290.318 [276.144, 306.402] 

Source: Author’s computation aided by R package V 3.6.3 
 
 Table 2 Shows Bayes estimates, Bayes 95% CI and standard deviation for (𝛼, 𝛽, 𝛾, and𝜆). 
Additionally, the asymptotic approximation method (Laplace approximation) is also used to 
simulate a random sample from the each of the marginal posterior density using sampling 
important resampling and approximate the posterior densities of the four parameters of the 
ACW model. The estimates of the four parameters (𝛾, 𝛼, 𝛽, and 𝜆) by asymptotic 
approximation method are respectively computed as, the Bayes estimates are0.2572, 
0.00333, 0.01626, and 290.511. The standard deviation of the four parameters are given 
as0.01452, 0.00000, 0.00590, and 7.84002. The Bayes 95% C.Is are also computed 
as[0.23221, 0.28838], [0.00332, 0.00334], [0.00758, 0.03018] and [276.144, 
306.402].Therefore, from the result, it is cleared that the metropolis Hasting algorism in 
Monte Carlo Markov Chain (MCMC) technic summarizes the posterior more precisely in 
terms of the lower standards deviations of the parameters as compared to that of asymptotic 
approximation. 
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(A) (B)   

         
 Figure 2. (A) Trace plots and (B) plots of the marginal posterior densities of the parameters 
for the posterior distribution of additive Chen-Weibull model using the IM 
Source: Author’s computation aided by R package V 3.6.3 
Fig. 2 (A) trace plot and (B) the marginal posterior density estimates of the parameters 
obtained by MCMC algorithm (algorithm 1). The trace plots of each parameter showed that 
IM algorithm converges quickly to the same target distribution. The marginal posterior 
densities of the four parameters are distributed approximately symmetrically around the 
central values which means that they provide good Bayesian estimates under square error 
loss function.  
 
Table 3:  MPSE of ACW model Using Meeker-Escobar data 

Parameter MPSEs 
𝛾   0.15168 
𝛼   0.00333 
𝜆   0.01518 
𝛽  13.4583 

Source: Author’s computation aided by R package V 3.6.3 
Table 3 gives the maximum product of spacing (MPS) point estimate of the four unknown 
parameters of additive Chen-Weibull (ACW) model of meeker-Escobar data using mpedist 
function in BMT package in R with good set of initial values of the parameters. 
 
Table 4. K-S and its p-value when fitting to ACWTo Meeker-Escobar data 

Method of Estimation                 K-S(p-value) 
Bayesian (Assuming exponential prior) 
Bayesian (Assuming Half-Cauchy prior) 
Bayesian (Assuming Gamma prior)              

0.13908(0.6074) 
0.14084(0.5912) 
0.14054(0.594) 

MPSEs 
MLEs  

0.13729(0.6238) 
              0.13423(0.6521) 

Source: Author’s computation aided by R package V 3.6.3 
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Table 4 represents the K-S statistic and its p-value for the comparison of the two different 
prior distribution (exponential and Half-Cauchy) for the estimation of four unknown 
parameters of ACW model to Meeker-Escobar dataset.The methods that produced highest p-
value will be considered as the best methods of estimating the ACW model parameters. The 
result from K-S statistic showed that our prior distribution (exponential) with KS = 0.13908 
with its corresponding p-value = 0.6074 perform better than the Bayesian approach 
assuming Half-Cauchy and gamma prior distributions.However, theMPSE and MLE with p-
values 0.6238and 0.6521 respectively perform relatively equal and better than the Bayesian 
estimates assuming both exponential, Half-Cauchy and gamma prior distribution.  

 
       (A)                                                              (B)                                                                                                         
Figure 3. The estimated (A) reliability function and (B) failure rate function obtained by 
fitting ACW distribution using Bayesian and MPS method of estimation to meeker-Escobar 
data 
Source: Author’s computation aided by R package V 3.6.3 
 
Fig 3 showed a visual comparison of reliability (R) function and FR functions plots of the 
Meeker-Escobar data with fitted parameter values of Bayesian estimate (assuming three 
different prior) and two different classical methods of estimation.we can see from (B)  that, 
the FR of Bayesianestimate assuming exponential prior  started to increase at around 𝑥 =
300,  which shows a low and long constant FR at mid time region.  
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(A)  (B) 

 
Fig. 4 showed (A) the cumulative distribution function (CDF) and (B) the probability 
distribution function (PDF) of the Bayesian estimation method assuming three different 
prior and two classical methods. From the plots we can see that all the methods have 
different shapes. From the results obtained we can conclude that, in Bayesian estimate 
exponential prior provides a suitable fit to the Meeker-Escobar dataset. However, in classical 
methods the MPSEs provides a better fit of the four unknown parameters of ACW model.  

 
Figure 4. The empirical scaled TTT-transform plot for Aarset data 
Source: Author’s computation aided by R package V 3.6.3 
Table 4. Bayes estimates (assuming exponential prior) for the parameters when  
 Fitting ACW model to Aarset data.      

Parameters Bayes SD Median Bayes 95%C.I 
𝛾 0.2841 0.0147 0.2839 [0.2559, 0.3131] 
𝛼 0.0118 0.0000 0.0118 [0.0117, 0.0118] 
𝜆 0.0418 0.0094 0.0409 [0.0262, 0.0626] 
𝛽 86.699 14.187 85.562 [62.009, 117.83] 
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Source: Author’s computation aided by R package V 3.6.3 
Table 4 Shows Bayes estimates, Bayes 95% CI and standard deviation for (𝛼, 𝛽, 𝛾, and𝜆). 
Additionally, the Laplace approximation is also considered to simulate a random sample from 
the each of the marginal posterior density using sampling important resampling and 
approximate the posterior densities of the ACW model’s parameter. The estimates of the four 
parameters (𝛾, 𝛼, 𝛽, and 𝜆) by asymptotic approximation method are respectively computed 
as, the Bayes estimates are0.2841, 0.0118, 0.0418, and 86.699. The standard deviation of the 
four parameters are given as0.0147, 0.00000, 0.0094, and 14.187. The Bayes 95% C.Is are 
also computed as[0.2559, 0.3131], [0.0117, 0.0118], [0.0262, 0.0626] and [62.009, 117.83]. 
Therefore, from the result, it is cleared that the metropolis Hasting algorism in Monte Carlo 
Markov Chain (MCMC) technic summarizes the posterior more precisely in terms of the 
lower standards deviations of the parameters as compared to that of asymptotic 
approximation. 
 
Table 6: Parameter estimate of ACW model of MPSE method using 
Aarset dataset 

Parameter MPSEs 
𝛾 0.2759 
𝛼 0.0118 
𝜆 0.0423 
𝛽 38.231 

Source: Author’s computation aided by R package V 3.6.3 
Table 6 gives the maximum product of spacing (MPS) point estimate of the four unknown 
parameters of additive Chen-Weibull (ACW) model ofAarset data using mpdist function in 
BMT package in R with good set of initial values of the parameters. 
 
Table 8. K-S and its p-value for comparison of Bayesian and non-Bayesian 
 Approach when fitting to Aarset data 

Method of Estimation  K-S statistics p-value 
Bayesian (Assuming Exponential prior)   
Bayesian (Assuming Half-Cauchy prior)  
Bayesian (Assuming Gamma prior) 

0.089631 
0.089235 
0.079682 

0.8166 
0.8208 
0.9087 

MPSEs 
MLEs 

0.069895 
0.070375 

0.9675 
0.9654 

Source: Author’s computation aided by R package V 3.6.3 
Table 8 represents the K-S statistic and its p-value for the comparison of the Bayesian 
approach assuming two different prior’s distribution when ϐitting ACW model to Aarset data. 
The result from K-S statistic showed that, the Bayesian assuming exponential and Half-
Cauchy performed relatively equal as there is slight difference in their K-S statistic and their 
corresponding p-values.Therefore, the MPSE with K-S = 0.069895 with its corresponding p-
value=0.9675 and MLE with K-S = 0.070375 with its corresponding p-value = 
0.9654Performed relatively equal and better than the Bayesian estimate assuming three 
differentpriordistribution. 
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                                    (A)                                                                  (B)                                                                        
         Figure. 8. The estimated (A) reliability function and (B) failure rate function.  
 
            Source: Author’s computation aided by R package V 3.6.3 
Fig 8. Showed a visual comparison of survival function and failure rate functions obtained by 
ϐitting ACW distribution using Bayesian assuming three different prior distribution and two 
classical methods of estimation to Aarset data.  it has been cleared from these plots that, the 
FR of both Bayesian and classical estimate started to increases at 𝑥 = 80which show a 
relatively low and long constant FR at mid time region.  

 
                                  (A)                                                                   (B) 
                Figure. 9. The estimated (A) PDF and (B) CDF of the ACW model  
                       Source: Author’s computation aided by R package V 3.6.3 
Fig. 9 showed the plots of (A) cumulative distribution function (CDF) with corresponding (B) 
probability density function (CDF) plotsobtained by ϐitting ACW distribution using Bayesian 
assuming three different prior and classical method of estimation usingAarset data. We can 
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observed from these plots that,  the three different priorand two classical estimation 
methods have almost similar shape as there is only slight difference.  
 
CONCLUSION  
In this study, Bayesian inference assuming exponential prior distribution under square error 
loss function (SELF) is considered in estimating the four unknown parameters of the additive 
Chen-Weibull (ACW) model. Two real data sets were used for illustration purposes. In the 
Bayesian paradigm, the analytic approximation and MCMC techniques were implemented 
using the functions LaplaceApproximation and LaplacesDemon, respectively. Therefore, it 
has been observed throughout that the simulation technique, particularly the independent 
metropolis algorithm, summarizes the posterior more precisely in terms of the lower 
standard deviations of the parameters as compared to the Laplace approximation. From the 
results obtained, we can conclude that the Bayesian estimate assuming an exponential prior 
distribution performed better than the Bayesian estimate assuming a half-Cauchy prior 
distribution studied by Abbas et al. (2021). 
 
REFERENCES  
 
A. Gelman, J. B.Carling, and D.B.Rubin, “Bayesian Data analysis, 2ndEdn”.  Boka Raton:  
Abbas, U. F, Ahmad, A and Mukhtar U. “Bayesian estimate of four parameter additive Chen-

Weibull distribution”. FUDMA journal of science. ISSN online: 2616-1370. ISSN print: 
2645 – 2944. Vol. 6 No. 1, March, 2022, pp 181 – 190. DOI: https://doi.org/10.33003/ϔjs-
2022-0601-891 

Ahmad, S. P and Ahmad, K. “Bayesian analysis of weibull distribution Using R Software” 
Australian Journal of Basic and Applied Sciences, 7(9): 156-164. ISSN 1991- 8178, 
(2013). 

Al Omari, M. A. (2016). Bayesian study using MCMC of Gompertz distribution based on 
interval censored data with three loss functions. Journal of applied science, ISSN 1812-
5654  

Almaliki, J.  Saad and Y. Jingson, “A new modified weibull distribution”. ReliabEngSyst Safe. 
2013; Vol. 111(C):164-170. DOI:  10.1016/j.ress.2013.10.018 (2013). 

Bo H., W. C., Xiofeng, D. “Additive modify weibull distribution”. Reliability engineering system 
safety 145:28-37(2016) 

        Chapman and Hall-CRC, (2004). 
Chen, R., and Amin, N.“Maximum product of spacing estimation with application to the 

lognormal distribution”. Mathematical Report 79-1 Cardiff Department of 
mathematics, UWIST. (1979) 

Chen, Z. “A new two parameter lifetime distribution with bathtub-shaped or increasing 
failure rate function”. StattprobabilLett. 49:155-161(2000) 

Chris. B. G and Noor, A. I. (2012). “Bayesian Analysis of the survival function and failure rate 
of weibull distribution with censored data”. Mathematical problem in 
engineeringvolume 2012, Article ID 329489, doi:10.115/2012/329489 (2012)  

Govind, S. Mudholkar and Srivastava, D. K. “ExponentiatedWeibull family for analyzing 
Bathtub failure rate”. IEEE T Reliab. 1993;   42:299-302. (1993). 

Hastings, W. K “Monte Carlo sampling methods using Markov Chains and their applications”.  
Biometrika 57, 97-109 (1970). 



InternaƟonal Journal of Pure Science and Research in Africa 

arcnjournals@gmail.com                                                       Page | 94  
 

Kamram, A., Noshen, Y. A., Amjad, A., Sajjad, A. K., Sadaf, M., Alamgir, K., Umar, K., Dost, M. k., 
and Zamir, H. “Bayesian analysis of three-parameter Frechet distribution with medical 
application”. Computational and mathematical methods inmedicine Article ID 9089856 
(2019) 

L. Tierney, R.E. Kass and J.B. Kadane, “Fully Exponential Laplace approximation to 
Expectation and variance of nonpositive Functions”. J. Am. Stat. Assoc. 84(407), 710-
716(1989) 

L.Tierney and J.B. Kadane, “Accurate Approximation for posterior moments and Marginal 
Densities”. J. Am. Stat. Assoc.  81(393), 82-86(1986) 

Mohammed, K. S., Atur J. L. and Gauss, M.C. “On the generalized extended 
exponenetiatedweibull (GExEW) distribution”. An international journal of computer 
mathematics 97:5, 1029-1057 (2019). 

Neetu, S., Kanchan, J., and Suresh, S. “The generalized Weibull distribution: properties, 
estimation and applications”. Reliability engineering, system safety (2012), 102:5-15  

R. Chen, and N. Amin, “Maximum product of Spacing estimation with application to the 
Lognormaldistribution”. Mathematical Report 79-1 Cardiff Department of 
mathematics,  

Tien, T. T and Radim, B. “An Additive Chen-Weibull distribution and its applications in 
reliability modeling”. A research article (2020).DOI: 10.1002/qre.2740  

Vikas, K S., Sanjay, K. S. and Umesh, S. “Classical and Bayesian methods of estimation for 
power Lindley distribution with application to waiting time data”. Article in 
communication for statistical application and methods Vol.24, No.3 (2017). 

Weibull, W. Investigate in to strength properties of brittle material. Proc. The royal Sweedish 
for Engr. #149 (1938) 

Xie, M and Lai C.D. “Reliability analysis using an additive Weibull model with bathtub shaped    
failure Rate function”. Reliability engineering (2019). 

 

 


