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Abstract: Nonlinear regression is one of the most popular and widely used models in analyzing the effect 
of explanatory variables on a response variable and it has many applications in sciences. With the 
presence of outliers or influential observations in the data, the ordinary least squares method can result 
in misleading values for the parameters of the nonlinear regression and the hypothesis testing, and 
predictions may no longer be reliable. The main purpose of this study is to determine the more robust 
estimator that gives flexible results, between robust M and robust MM to estimate the parameter of 
nonlinear regression model from data that contain influential observations / outliers at different error 
distributions. Monte Carlo simulations were performed to evaluate the robustness of M and MM 
methods in comparison with the Ordinary Least Squares method. The performances of the estimators 
were measured using AIC, BIC, and MSE criteria. The effect of sample sizes was also examined for 
different levels of contaminations and error distributions. The study concluded that the robust M is the 
best in exponential, uniform and Cauchy error distributions without outlier in the explanatory variables 
at lower and moderate sample sizes while OLS and Robust MM are the best respectively at larger sample 
size. Robust M is the best estimator when there are outliers in the explanatory variables and error 
distribution is normal while robust MM is most robust estimator when there are outliers and error 
distributions are non normal from both exponential and polynomial models.  

Keywords: M estimator, MM estimator, error distribution, simulation.  

 

 

1.0 Introduction 

In robust statistics, robust regression is a form of regression analysis designed to overcome 
some limitations of traditional parametric and non-parametric methods. An estimator or 
statistical procedure is robust if it provides useful information even if some of the assumptions 
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used to justify the estimation method are not applicable. Regression analysis seeks to find the 
relationship between a dependent variable and one or more independent variables. Efficient 
estimation of parameters of nonlinear regression models is a fundamental problem in applied 
statistics. The nonlinear least squares estimators are sensitive to presence of outliers in the 
data and other departures from the underlying distributional assumptions. Nonlinear 
regression techniques are used for parameter estimation in many scientific data where models 
must be calibrated to data.  

The main purpose of robust nonlinear regression is to fit a model to the data that gives robust 
results in the presence of influential observations, leverage points and/or outliers. Rousseeuw 
and Leroy (1987) defined vertical outliers as those data points with outlying values in the 
direction of the response variable, while leverage points are outliers in the direction of 
covariates. An observation may be influential if its removal would significantly alter the 
parameter estimates. Edgeworth (1987) proposed the Least Absolute Deviation as a robust 
method. Huber (1973) introduced the method of M-estimation. Rousseeuw (1984) introduced 
the Least Trimmed Square estimates. The S-estimator was introduced by Rousseeuw and Yohai 
(1984). Yohai and Zammar (1988) introduced the τ-estimator of linear regression coefficients. It 
is a high efficiency estimator and has a high breakdown point. Tabatabai and Argyros (1993) 
extended the τ-estimates to the nonlinear regression models. Stromberg (1993) introduced 
algorithms for Yohai’s MM estimator of nonlinear regression and Rousseeuw’s least median 
estimators of nonlinear regression. 

Despite their superior performance over least squares estimation in many situations, robust 
methods for regression are still not widely used. Several reasons may help explain their 
unpopularity (Hampel et al. 1986, 2005). Other possible reasons are; there are several 
competing methods (Andersen, 2008) and computation of robust estimates is much more 
computationally intensive than least squares estimation. In recent years, however, this 
objection has become less relevant, as computing power has increased greatly. Another reason 
may be that some popular statistical software packages failed to implement the methods 
(Stromberg, 2004).  

Although commitment of robust methods has been slow, modern mainstream statistics text 
books often include discussion of these methods [for example, the books by Seber and Lee 
(2003), and by Faraway (2004)]; for a good general description of how the various robust 
regression methods developed from one another see Andersen's (2008). Also, modern 
statistical software packages such as R, Stats models, Stata and S-PLUS include considerable 
functionality for robust estimation [ Maronna et al (2006)]. 

Tolga and Hassan (2018) considered a modified ratio estimator using robust regression 
methods when there is outliers in the set of data; in order to solve the problem of Kadilar et al 
(2007) adopted Huber M method which is only one of robust regression method to ratio type’s 
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estimators and decreased the effect of the outlier problem. The theoretical results are 
supported with the aids of numerical examples and simulations by basing on data that includes 
an outlier. 

Furthermore, Aamir et al (2019) suggested a new robust estimator with respect to non-normal 
distribution. In this study they observed some situations in which modified maximum likelihood 
estimation becomes in appropriate to develop the robust and efficient estimator of the 
population mean. A robust shrinkage range estimation algorithm based on Hampel and 
Skepped filter was presented by Chee-Hyun and Joon-Hyuk (2019). They demonstrated that the 
estimation accuracy of the proposed method is higher than those of the existing median based 
shrinkage methods through extensive simulation. 

The commonly used estimators are: Stein Estimator by Stein (1956), Liu Estimator by Liu (1993) 
and Ridge Estimator proposed by Hoerl and Kennard (1970) which are more efficient than OLS 
when there is collinearity in two or more explanatory variables. Robust regression can be used 
in any situation where least squares regression could be used. Frequently, data sets contains 
outliers which are not errors of measurement but representative outliers, hence there is no 
reason to exclude them from the analysis. 

Therefore, in this study, the performance of least squares estimator and robust estimators (m-
estimator and mm-estimator) in nonlinear regression models under various contamination 
schemes of error distribution were examined. 

2. Methodology 

 The performance of the estimators was measured using Akaike information criterion (AIC), 
Bayesian information criterion (BIC), and Mean Square error (MSE). The contaminations were 
considered in the explanatory variables and different error distributions. The effect of sample 
size was also examined for different levels of contaminations. Simulations were conducted 
using R Statistical software by specifying the parameter values to the models under different 
sample sizes and the estimators. The models to be used in simulating data are exponential and 
polynomial functions given in equations (1) and (2).  

2.1 Model Specification and Generation of Data for Simulations  

The models considered for the simulation are: 

𝑦 = 𝛽 + exp[𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ] + 𝑒 , 𝑖 = 1,2 … , 𝑛                                                                     (1) 
𝑦 = 𝛽 +  𝛽ଵ𝑥ଵ

ଶ + 𝛽ଶ𝑥ଶ
ଶ + 𝑒 , 𝑖 = 1,2 … , 𝑛                                                                               (2) 

Where, yi is dependent variable, 𝑥ଵ 𝑎𝑛𝑑 𝑥ଶ are two independent variables,  𝛽  , 𝑗 = 0,1,2 are 
parameters of the regression and 𝑒 is random error. Random values will be simulated for the 
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two explanatory variables from Normal distribution. This will be followed by injecting outlier to 
the explanatory variables. The error term will be generated differently from Normal, 
Exponential, Cauchy, and Uniform distributions. The codes for each case of simulation; 
parameter and sample sizes fixed for the simulation are discussed in subsequent sections.  
For the simulation study, the parameters of nonlinear models are fixed as 𝛽=1, 𝛽ଵ=1 and 𝛽ଶ=1. 
The sample sizes used for the simulation of data are; 10, 20 and 40. At a particular choice of 
sample size, the simulation study will be performed 1000 times for different forms of nonlinear 
models in equations (1) and (2). The disturbances or error terms will be generated from normal 
distribution with mean 0 and variance 1 and other non-normal distributions (exponential, 
uniform and Cauchy distributions) as follows: 

𝑒~N(0, 1), 𝑒~exp(1), 𝑒~U(0, 1) and 𝑒~cauch(0, 1) 
The explanatory variables of equations (1) and (2) were generated with the injection of outliers 
as follows; 
X1=c(rnorm(n-1, 0,1),rnorm(1, 100,1)) 
X2=c(rnorm(n-1,0,1),rnorm(1,100,1)) 
X1=c(rnorm(n-2, 0,1),rnorm(2, 100,1)) 
X2=c(rnorm(n-2,0,1),rnorm(2,100,1)) 
X1=c(rnorm(n-3, 0,1),rnorm(3, 100,1)) 
X2=c(rnorm(n-3,0,1),rnorm(3,100,1)) 
This shows number of outliers introduced are 1, 2 and 3 from second form of normal 
distribution in the explanatory variables. These form 10% of sample size of 10, 5% of sample 
size of 20 and 3% of sample size of 40, when one outlier is introduced. 20% of sample size of 10, 
10% of sample size of 20 and 5% of sample size of 40, when two outliers are introduced.30% of 
sample size of 10, 15% of sample size of 20 and 8% of sample size of 40, when three outliers is 
introduced. Note that each case of simulations will be performed 1000 times to form 1000 
iterations. 
2.3 OLS Estimator Procedure for Nonlinear Regression model parameter estimation Methods 

For the purpose of this study, the nonlinear regression model considered is as follows: 

𝑌 = 𝑓൫𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + ⋯ + 𝛽𝑋൯ + 𝑒 ,             𝑖 = 1, … , 𝑛                                 (3) 

𝑌 = (𝑌ଵ, … , 𝑌)ᇱ 

                         𝑋 = (𝑋ଵ , … , 𝑋)
ᇱ,     𝑖 = 1, … , 𝑛 

Y is the vector variable observed for ith measurement, f is a given nonlinear function (say, 
polynomial or exponential) and (𝑒ଵ , … , 𝑒)ᇱ are the vector of random regression errors 
(disturbances). The model (3) can be expressed as  
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𝑌 = 𝑓(𝑋
ᇱ𝛽) + 𝑒                                                                                                                                      

(4)  

The aim of the analysis is to estimate the regression parameters  

𝛽 = (𝛽ଵ, … , 𝛽)ᇱ.                                                                                                                                       (5) 

Nonlinear regression models have found numerous econometric applications e.g. in the analysis 
of cross-section data or financial time series (Chang et al, 2002) 

The most common estimator of parameters in the nonlinear model (1) is the nonlinear least 
square (NLS) estimator. Utilizing the Ordinary Least Squares (OLS) method for the nonlinear 
model (3), the estimator (𝛽) is found by minimizing the sum of squared residuals: 

min (𝑒)
ଶ, 𝑤ℎ𝑒𝑟𝑒 𝑒 = 𝑦 − 𝑦ො



ୀଵ

                                                                                                          (6) 

min (𝑌 − 𝑓(𝑋
ᇱ𝛽))ଶ



ୀଵ

                                                                                                                             (7) 

This gives the OLS estimator for (𝛽) as: 

    𝛽መைௌ = 𝑓ିଵ[(𝑋ᇱ𝑋)]𝑋ᇱ𝑌                                                                        (8) 

Overall possible values  

𝛽መ = (𝛽ଵ, … , 𝛽)ᇱ𝜖 𝑅                                                                                                                                   (9) 

The OLS estimate is expected to be optimal when the error distribution is assumed to be 
normally distributed with mean zero and positive variance. Using the OLS estimator should be 
accompanied by verifying its assumptions and its diagnostic tools are well known. Nevertheless, 
the estimator suffers from a high vulnerability with respect to the presence of outliers in the 
data. While various robust estimators are available for the linear regression model, most of 
them do not allow to be extended to the nonlinear model. The principle of Nonlinear Robust M 
(NRM) and Nonlinear Robust S (NRS) estimators will be investigated in relation with Nonlinear 
Least Square estimators under different conditions. 
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2.4 M-Estimation 

Linear least-squares estimates can behave badly when the error distribution is not normal, 
particularly when the errors are heavy-tailed. One remedy is to remove influential observations 
from the least-squares fit. Another approach, termed robust regression, is to use a fitting 
criterion that is not as vulnerable as least squares to unusual data. The most common general 
method of robust regression is M-estimation, introduced by Huber (1973). This class of 
estimators can be regarded as a generalization of maximum-likelihood estimation, hence the 
term “M-estimation”.  

Let’s recall and consider the nonlinear model (3) 

𝑌 = 𝑓൫𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + ⋯ + 𝛽𝑋൯ + 𝑒 ,             𝑖 = 1, … , 𝑛  

and the residuals are given by  𝑒 = 𝑦 − 𝑦ො  
With M-estimation, the estimates β are determined by minimizing a particular objective 
function over all β,  
∑ 𝜌(𝑒)


ୀଵ = ∑ 𝜌(𝑦 − 𝑥

ᇱ𝛽)
ୀଵ 𝑅                                                                                                            

(10) 
Where the function ρ gives the contribution of each residual to the objective function. A 
reasonable ρ should have the following properties: 

i. always nonnegative, ρ(𝑒) ≥ 0  
ii. equal to zero when its argument is zero, ρ(0) = 0 
iii. symmetric, ρ(𝑒) = ρ(−𝑒)  
iv. monotone in |𝑒|, ρ(𝑒) ≥ ρ(𝑒′) for |𝑒| > |𝑒′| 
For example, the least-squares ρ-function ρ(𝑒) = 𝑒

ଶ satisfies these requirements, as do 
many other functions. Let ψ = be 𝜌ᇱ the derivative of ρ. ψ is called the influence curve. 
Differentiating the objective function with respect to the coefficients β and setting the 
partial derivatives to 0, produces a system of k + 1 estimating equations for the coefficients: 

 ψ(𝑦 − 𝑥
ᇱ𝛽)𝑥

ᇱ = 0



ୀଵ

                                                                                                                     (11) 

Define the weight function w (e) = ψ (e)/e, and let wi = w(ei). 
Computing the estimating equations may be written as 

 𝑤(𝑦 − 𝑥
ᇱ𝛽)𝑥

ᇱ = 0



ୀଵ

                                                                                                                    (12) 

Solving these estimating equations is equivalent to a weighted least-squares problem, 
minimizing  
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 𝑤
ଶ = 0



ୀଵ

                                                                                                                                          (13) 

The weights, however, depend upon the residuals, the residuals depend upon the estimated 
coefficients, and the estimated coefficients depend upon the weights. An iterative solution 
(called iteratively reweighted least-squares, IRLS) is therefore required: 

i. Select initial estimates β (0), such as the least-squares estimates. 
ii. At each iteration t, calculate residuals 𝑒

௧ିଵand associated weights 𝑤
௧ିଵ = 𝑤[𝑒

௧ିଵ]from 
the previous iteration. 

iii. Solve for new weighted-least-squares estimates 
𝛽(௧) = ൣ𝑋′𝑊(௧ିଵ)𝑋൧

ିଵ
𝑋′𝑊(௧ିଵ)𝑦                                                                                                 (14) 

Where X is the model matrix, with 𝑥
ᇱas its ith row, and 𝑊(௧ିଵ) = diagnൣ𝑊(௧ିଵ)൧ is the 

current weight matrix. 
Steps 2 and 3 are repeated until the estimated coefficients converge. The asymptotic 
covariance matrix of β is 

𝛽(௧) 𝑣(𝛽) =
𝐸(ψଶ)

[𝐸(ψᇱ)]ଶ
(𝑋′𝑋)ିଵ                                                                                                             (15) 

Using ∑ [ψ(𝑒)]ଶ
ୀଵ  to estimate E(ψଶ), and ቂ∑

நᇲ()

୬


ୀଵ ቃ

ଶ

 to estimate [E(ψᇱ)]2 produces the 
estimated asymptotic covariance matrix, 𝑣ො(𝛽) (which is not reliable in small sample). 

2.5 MM Estimators  

MM estimators (Yohai, 1987) reach a high level of robustness as well as high (tunable) 
efficiency, by combining the properties of M estimators and S estimators. Let 𝛽

 be an S 
estimator, and let σ ෝ be the corresponding M estimator of scale, solving for 𝛽 = 𝛽

. The MM 
estimator is then defined as local solution of 

𝛽ெெ = min
ఉ

 𝜌 ൬
𝑟𝛽

σ ෝ
൰                                                                                                         (16)

   



ୀଵ

 

Obtained with IRWLS and initial value 𝛽
 . An implementation of MM estimators is available in 

the package MASS (function rlm). 

MM-estimation attempts to retain the robustness and resistance of S-estimation, while gaining 
the efficiency of M-estimation. The method proceeds by finding a highly robust and resistant S-
estimate that minimizes an M-estimate of the scale of the residuals (the first M in the method's 
name). The estimated scale is then held constant whilst a close by M-estimate of the 
parameters is located (the second M). 
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3. Data Analysis and Results  

Table 1: Performance of Estimators when Error Distribution is Normal 

Sample 
Size 

Model Exponential Polynomial 
Estimator MSE AIC BIC MSE AIC BIC 

 
10 

OLS 0.8865 46.49962 47.7099
6 

1.051 43.69414 44.90448 

Robust M 0.6269 47.53322 48.7435
6 

1.092 44.02461 45.23495 

Robust MM 0.5553 50.44593 51.6562
7 

1.236 46.31082 47.52117 

 
20 

OLS 1.531 98.00129 101.984
2 

2.036 88.33785 92.32078 

Robust M 0.9252 100.8508 104.833
7 

2.705 89.10289 93.08582 

Robust MM 0.9159 104.6038 108.586
7 

1.723 91.79753 95.78046 

 
40 

OLS 1.489 208.7867 215.542
3 

1.517 177.6032 184.3588 

Robust M 1.038 214.8528 221.608
3 

1.186 178.8611 185.6167 

Robust MM 1.127 220.6504 227.405
9 

1.108 181.6315 188.387 

 
Table 1 above shows the relative performance of the three estimators under different criteria 
of selection at different sample size when the error term is generated from normal distribution. 
From the table, it is observed that OLS is the best at different sample sizes especially on the 
basis of AIC and BIC criteria for both exponential and polynomial models. This is followed by 
Robust M as the second best in terms of all criteria. 
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Table 2: Performance of Estimators when Error Distribution is Exponential 

Sample 
Size 

Model Exponential Polynomial 
Estimator MSE AIC BIC MSE AIC BIC 

 
10 

OLS 0.5313 40.2890
4 

41.49938 1.616 40.1761
3 

41.3864
7 

Robust M 0.274 40.0101 40.22044 2.024 40.5937
2 

41.8040
6 

Robust MM 0.2825 48.3013
5 

49.51169 0.7581 34.6789
2 

35.8892
6 

 
20 

OLS 1.743 91.7620
6 

95.74499 1.226 82.5889
7 

86.5719 

Robust M 0.274 86.1931 90.176 0.916 80.7644
4 

80.7473
7 

Robust MM 0.3063 104.958
6 

108.9415 0.3766 80.1930
3 

80.1759
6 

 
40 

OLS 0.147 201.087
1 

207.8426 1.559 166.806
6 

173.562
1 

Robust M 1.441 209.955
2 

216.7108 1.777 168.725
3 

175.480
9 

Robust MM 0.734 221.107
8 

200.8633 1.11 164.475
1 

161.230
6 

 

The table 2 shows that Robust M has the lowest values of MSE, AIC and BIC for exponential 
model at sample sizes of 10 and 20 while robust MM has the lowest values in the three criteria 
from polynomial model at the same sample sizes and therefore they can be classified as the 
best respectively.  However at the largest sample size of 40, The OLS seems to be the best 
estimator based all the criteria for both model  
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Table 3: Performance of Estimators when Error Distribution is Uniform 

Sample 
Size 

Model Exponential Polynomial 
Estimator MSE AIC BIC MSE AIC BIC 

 
10 

OLS 0.4629 49.7533
3 

49.96368 0.4204 46.1787
9 

47.3891
3 

Robust M 0.4024 42.2499
1 

43.46025 0.2533 40.5720
6 

41.7824 

Robust MM 0.4395 47.0481 48.25844 0.3082 44.5313
1 

45.7416
5 

 
20 

OLS 2.538 89.5780
5 

96.56098 3.1175 89.7771 96.6598 

Robust M 0.341 83.7255
2 

87.70844 2.341 83.7255 87.7084
4 

Robust MM 1.267 88.3430
7 

92.326 1.267 88.3430
7 

92.326 

 
40 

OLS 4.895 200.012
3 

206.7678 1.478 167.207
8 

173.963
3 

Robust M 0.743 208.418
5 

215.1741 1.078 169.019
6 

175.775
1 

Robust MM 0.4071 218.286
3 

225.0418 0.8408 175.734
5 

182.49 

 

The average values of MSE, AIC and BIC recorded in table 3 revealed that Robust M was the 
best estimators because it has the minimum values of the three criteria used for the 
assessment followed by Robust MM while OLS has the least performance among the three at 
sample size of 10 and 20. However the OLS supersedes their performances as the sample size 
increases to 40 
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Table 4: Performance of Estimators when Error Distribution is Cauchy 

Sample 
Size 

Model Exponential Polynomial 
Estimator MSE AIC BIC MSE AIC BIC 

 
10 

OLS 0.9980 71.8571
4 

78.06748 1.8928 69.3786 69.5889
4 

Robust M 0.9526 67.9747
5 

69.18509 1.157 66.2970
4 

67.5073
8 

Robust MM 0.7945 69.8290
1 

71.03935 0.8907 67.8741
4 

69.0844
8 

 
20 

OLS 6.265 149.318
9 

154.3018 4.776 149.241
6 

151.224
6 

Robust M 3.349 145.479
7 

149.4626 2.91 140.763
8 

144.746
7 

Robust MM 3.445 147.295
6 

151.2786 3.417 141.886
3 

145.869
2 

 
40 

OLS 4.783 317.764
8 

328.5203 1.977 305.859 319.614
5 

Robust M 1.461 314.970
2 

321.7257 1.539 304.786
1 

311.541
6 

Robust MM 1.544 313.665
4 

320.4209 1.013 303.439
3 

310.194
8 

 

The average values of MSE, AIC and BIC recorded in table 4. From the graphs, Robust M was the 
best estimators followed by Robust MM while OLS has the least performance among the three 
at sample size of 10 and 20. The robust MM is the best at sample size of 40 which is also 
followed by robust M. The gap between their performances increases relatively most especially 
as sample size increases.  
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Table 5: Performance of Estimators on One Outlier in the Explanatory Variables  

 
N 

% of 
Outliers 

Model Exponential Polynomial 
Estimator MSE AIC BIC MSE AIC BIC 

 
10 

 
10% 

OLS 2.527 e+84 4933.26
4 

4934.47
5 

32.60 230.314
1 

231.5244 

Robust M 1.239e+84 3933.47 3934.68 1.350 130.519
8 

131.7301 

Robust MM 1.26 e+84 4014.38
2 

4015.59
3 

1.546 211.434
4 

212.6447 

 
20 

 
5% 

OLS 9.954e+84 8862.42
1 

8866.40
4 

97.38 267.988
9 

271.9718 

Robust M 8.787e+84 7862.58
6 

7866.56
9 

86.67 258.153 262.136 

Robust MM 1.042+84 8005.41
9 

8009.40
2 

86.84
6 

400.983
9 

404.9668 

 
40 

 
3% 

OLS 3.776e+84 15719.9
6 

15726.7
2 

95.83 513.366 520.1215 

Robust M 4.333e+84 15720.0
8 

15726.8
4 

109.9 513.490
2 

520.2457 

Robust MM 5.127+84 15973.7
3 

15980.4
9 

1.108 766.222
3 

772.9778 

 

Table 5 shows the results of the three estimators on the two forms of nonlinear regression 
when only one outlier is introduced to the explanatory variables and error distribution is 
normal. From the table, Robust M is the best estimators to estimate both exponential and 
polynomial form of the models followed by Robust MM while OLS has the least performance at 
the sample size of 10 and 20 where the outlier form 10 and 5% of the sample size respectively.  
However as sample size increases to 40 and outlier forms just 3%, the OLS supersedes the two 
robust estimators in performance 
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Table 6: Performance of Estimators on two Outliers in the Explanatory Variables 

 
n 

% of 
Outliers 

Model Exponential Polynomial 
Estimator MSE AIC BIC MSE AIC BIC 

 
10 

 
20% 

OLS 1.184e+86 4070.53 4081.74 130.00 230.402 231.6123 
Robust M 4.728e+83 4011.774 4012.984 58.61 130.5864 131.7967 
Robust MM 1.722+84 4032.255 4033.466 61.888 218.37 219.5803 

 
20 

 
10% 

OLS 1.438e+86 8060.475 8064.458 97.29 358.0574 362.0403 
Robust M 9.363e+84 8005.739 8009.721 86.25 258.2226 262.2055 
Robust MM 1.042+86 8042.066 8046.049 91.846 314.8779 318.8609 

 
40 

 
5% 

OLS 6.005e+85 16973.56 16980.31 194.39 813.5445 820.3 
Robust M 1.991e+84 15996.58 16003.34 102.6 513.6858 520.4413 
Robust MM 1.192+84 16043.36 16050.11 111.17 793.9592 800.7148 

 
Table 6 shows the results of the two sestimators on the two forms of nonlinear regression 
when two outliers is introduced to the explanatory variables and error distribution is normal. 
From the table, Robust M is the best estimators to estimate both exponential and polynomial 
form of the models followed by Robust MM while OLS has the least performance at all sample 
sizes 
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Table 7: Performance of Estimators on Three Outliers in the Explanatory Variables 

 
n 

% of 
Outliers 

Model Exponential Polynomial 
Estimator MSE AIC BIC MSE AIC BIC 

 
10 

 
30% 

OLS 2.088e+8
6 

4077.02
6 

4078.23
6 

117.6 230.390
5 

231.600
8 

Robust M 1.308e+8
4 

4030.19
6 

4031.40
6 

77.39 130.656
2 

131.866
6 

Robust MM 3.254+84 4041.01
1 

4042.22
2 

83.573 222.415
4 

223.625
7 

 
20 

 
10% 

OLS 2.942e+8
6 

8071.90
4 

8075.88
7 

119.51 458.039
7 

462.022
7 

Robust M 6.689e+8
4 

8037.14
5 

8041.12
8 

115.1 258.236
9 

262.219
8 

Robust MM 7.042+84 8058.59 8062.57
3 

117.84
6 

422.979
1 

426.962 

 
40 

 
8% 

OLS 6.051e+8
5 

16099.3
6 

16096.1
2 

194.11 813.675
5 

820.431
1 

Robust M 3.447e+8
4 

16038.4
2 

16045.1
7 

101.7 513.842
2 

520.597
7 

Robust MM 4.192+84 16079.7 16086.4
6 

1.17 810.183
2 

816.938
7 

It was observed from the table 7, when three outliers are introduced into the explanatory 
variables of the two nonlinear functions and the error distribution is normal, that Robust M is 
the best estimator for both models at all sample sizes and outlier proportions. This is followed 
by Robust MM and the least performing estimator is OLS 
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Table 8: Performance of Estimators on One Outlier in the Explanatory Variables with 
Exponential Error Distribution 

 
n 

% of 
Outliers 

Model Exponential Polynomial 
Estimator MSE AIC BIC MSE AIC BIC 

 
10 

 
10% 

OLS 5.343e+84 3934.626 3936.836 110.9 132.4273 132.6376 
Robust M 5.566e+84 3932.842 3934.053 105.2 130.6431 131.8535 
Robust MM 1.6641+84 3013.62 3014.831 101.342 111.4204 112.6307 

 
20 

 
5% 

OLS 5.683e+84 7864.55 7866.532 113.3 259.3344 264.3173 
Robust M 4.033e+84 7861.71 7865.693 80.61 258.4946 262.4775 
Robust MM 1.3835+84 7004.194 7008.177 80.4869 200.9711 204.9541 

 
40 

 
3% 

OLS 3.455e+84 15727.48 15733.24 153.5 515.3371 522.0926 
Robust M 2.175e+84 15725.62 15732.37 126.2 513.4701 520.2257 
Robust MM 1.7349+84 15080.64 15087.4 111.18 766.2885 773.044 

 

Table 8 presents the results of the estimators when one outlier is introduced to both 
exponential and polynomial models at different sample sizes, where error term is exponential. 
The best estimator is observed at the lowest sample sizes for all estimators. While Robust MM 
is the best performing estimator at different proportions of outliers and levels of sample size,  
the OLS is the least 

Table 4.9: Performance of Estimators on two Outliers in the Explanatory Variables with 
Exponential Error Distribution 

 
n 

% of 
Outliers 

Model Exponential Polynomial 
Estimator MSE AIC BIC MSE AIC BIC 

 
10 

 
20% 

OLS 8.044e+85 4008.049 4009.259 106.8 130.3027 131.5131 
Robust M 6.832e+84 4003.242 4003.452 69.33 120.5003 121.7107 
Robust MM 1.105+84 4001.058 4001.268 62.176 118.3473 119.5576 

 
20 

 
10% 

OLS 4.159e+85 8009.059 8009.042 112.3 258.3037 262.2866 
Robust M 3.711e+84 8004.395 8008.378 71.12  228.4714 232.4543 
Robust MM 1.4766+84 8002.61 8003.593 61.486 214.8473 218.8303 

 
40 

 
5% 

OLS 1.663e+85 15962.56 15969.31 153 513.2792 520.0347 
Robust M 3.2e+84 15985.69 15992.45 186.6 513.4252 510.1807 
Robust MM 2.7984+84 16045.49 16052.24 1.281 793.9951 500.7506 

Table 9 presents the results of the estimators when two outliers are introduced to both 
exponential and polynomial models at different sample sizes, where error term is exponential. 
The best estimator is observed at the lowest sample sizes for all estimators. While Robust MM 
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is the best performing estimator at different proportions of outliers and levels of sample size 
the OLS is the least 

Table 10: Performance of Estimators on Three Outliers in the Explanatory Variables with 
Exponential Error Distribution 

 
n 

% of 
Outliers 

Model Exponential Polynomial 
Estimator MSE AIC BIC MSE AIC BIC 

 
10 

 
30% 

OLS 1e+86 4045.599 4046.809 109.4 135.2653 135.4756 
Robust M 2.056e+84 4028.714 4029.924 86.51 130.5021 131.7125 
Robust MM 2.078+84 4039.603 4040.813 5.046 222.4064 223.6168 

 
20 

 
10% 

OLS 1.548e+86 8061.515 8065.498 113 458.4382 462.4211 
Robust M 5.833e+84 8036.779 8040.761 71.97 258.6482 262.6311 
Robust MM 5.883+84 8057.478 8061.461 76.74 422.9579 426.9408 

 
40 

 
8% 

OLS 2.694e+86 16088.01 16084.76 154.4 813.2973 820.0528 
Robust M 4.479e+84 16037.46 16044.22 186.8 513.4612 520.2167 
Robust MM 8.713+84 16079.83 16086.59 111.28 810.2022 816.9577 

 
From table 4.10, Robust M has minimum values of MSE, AIC and BIC and it is therefore the best 
among other estimators at different sample sizes and percentages of outlier. All estimators are 
observed to be the best at lower sample sizes. The least performing estimator from both 
models with three outliers on their explanatory variables is OLS due to its highest value of the 
three criteria 
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Table 11: Performance of Estimators on One Outlier in the Explanatory Variables with 
Uniform Error Distribution 

 
n 

% of 
Outliers 

Model Exponential Polynomial 
Estimator MSE AIC BIC MSE AIC BIC 

 
10 

 
10% 

OLS 2.818e+84 3932.771 3933.981 60.33 130.2461 131.4565 
Robust M 1.346e+84 3732.97 3734.181 28.61 120.4458 121.6562 
Robust 
MM 

6.466+82 3013.951 3015.161 20.3083 111.4233 112.6336 

 
20 

 
5% 

OLS 1.189e+84 7863.742 7867.725 166.8 258.1085 262.0914 
Robust M 8.567e+83 7463.9 7467.883 123.2 238.2676 242.2505 
Robust 
MM 

5.561+82 7006.628 7010.61 111.521 200.9879 204.9708 

 
40 

 
3% 

OLS 3.797e+84 15723.02 15729.77 139.8 513.155 519.9105 
Robust M 2.957e+84 15223.16 15229.91 107.8 512.2932 513.0487 
Robust 
MM 

4.071+82 15071.81 15078.56 100.942 506.2066 507.9621 

 

The average values of MSE, AIC and BIC recorded in table 11 revealed that Robust MM was the 
best estimators because it has the minimum values of the three criteria used for the 
assessment followed by Robust M while OLS has the least performance among the three at 
sample size different sample sizes and percentages of outlier. 

Table 12: Performance of Estimators on two Outliers in the Explanatory Variables with 
Uniform Error Distribution 

 
n 

% of 
Outliers 

Model Exponential Polynomial 
Estimator MSE AIC BIC MSE AIC BIC 

 
10 

 
20% 

OLS 1.552e+86 4010.706 4011.916 53.39 131.3336 132.5439 
Robust M 1.092e+84 4001.935 4010.145 34.5 130.0132 131.7236 
Robust MM 8.253+84 4001.416 4002.626 0.3083 118.3526 119.563 

 
20 

 
10% 

OLS 1.597e+86 8000.583 8004.566 172.3 258.0792 262.0622 
Robust M 2.363e+84 8005.886 8003.869 143 238.2402 252.2231 
Robust MM 7.052+84 8002.47 8002.453 2.017 214.8651 118.8481 

 
40 

 
5% 

OLS 9.286e+84 15965.21 15971.96 139.4 513.1691 519.9246 
Robust M 3.063e+84 15088.06 15964.82 107 512.3198 519.0753 
Robust MM 4.071+84 15042.6 15049.36 0.8958 503.9625 500.718 
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The average values of MSE, AIC and BIC recorded in table 12 revealed that Robust MM was the 
best estimators because it has the minimum values of the three criteria used for the 
assessment followed by Robust M while OLS has the least performance among the three at 
sample size different sample sizes and percentages of outlier. 

Table 13: Performance of Estimators on Three Outliers in the Explanatory Variables with 
Uniform Error Distribution 
 
n 

% of 
Outliers 

Model Exponential Polynomial 
Estimator MSE AIC BIC MSE AIC BIC 

 
10 

 
30% 

OLS 1.583e+86 4067.088 4068.298 52.97 230.4995 231.7098 
Robust M 1.605e+84 4030.235 4031.446 38.24 130.7385 131.9489 
Robust 
MM 

1.656+84 4040.838 4042.049 41.33 222.4104 223.6207 

 
20 

 
10% 

OLS 6.074e+86 8061.95 8065.933 175.4 358.0405 362.0235 
Robust M 7.342e+84 8037.229 8041.212 134.5 258.2377 262.2206 
Robust 
MM 

7.052+84 8059.204 8063.187 142.017 262.9705 266.9535 

 
40 

 
8% 

OLS 9.495e+84 16068.69 16065.44 139.2 813.2029 819.9584 
Robust M 3.44e+84 16038.12 16044.87 109.3 513.3757 520.1312 
Robust 
MM 

4.392+84 16077.81 16084.57 0.9473 810.1729 816.9284 

 

From table 13, Robust M has minimum values of MSE, AIC and BIC and it is therefore the best 
among other estimators at different sample sizes and percentages of outlier followed by robust 
MM. All estimators are observed to be the best at lower sample sizes. The least performing 
estimator from both models with three outliers on their explanatory variables is OLS due to its 
highest value of the three criteria 
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Table 14: Performance of Estimators on One Outlier in the Explanatory Variables with Cauchy 
Error Distribution 

 
n 

% of 
Outliers 

Model Exponential Polynomial 
Estimator MSE AIC BIC MSE AIC BIC 

 
10 

 
10% 

OLS 2.818e+84 4032.771 4033.981 60.62 230.5884 231.7987 
Robust M 1.346e+84 3932.97 3934.181 30.54 130.8046 132.015 
Robust MM 1.167e+84 4013.951 4015.161 31.142 211.4276 212.6379 

 
20 

 
5% 

OLS 1.189e+84 8063.74 8067.725 167.1 269.0667 273.0496 
Robust M 8.567e+83 7863.9 7867.883 127 259.2553 263.2382 
Robust MM 1.173e+84 8006.628 8010.61 3.889 260.9879 264.9708 

 
40 

 
3% 

OLS 3.797e+84 15723.02 15729.77 139.3 516.2296 522.9851 
Robust M 2.957e+84 15723.16 15729.91 106.9 516.4058 523.1614 
Robust MM 3.561+84 15971.81 15978.56 2.168 766.2833 773.0389 

The average values of MSE, AIC and BIC presented in table 14, shows that the robust M is the 
best estimator at sample sizes of 10 and 20 with 10% and 20% respectively due to its minimum 
values of the criteria, this is followed by Robust MM. However, as sample size is getting larger 
(when sample size is 40),   OLS seems to have the minimum values of AIC and BIC and can be 
categorized as the best in that category due to very low percentage of outliers over the sample 
size. M estimator has the second performance while MM estimator is the least in that category  

Table 15: Performance of Estimators on two Outliers in the Explanatory Variables with 
Cauchy Error Distribution 

 
n 

% of 
Outliers 

Model Exponential Polynomial 
Estimator MSE AIC BIC MSE AIC BIC 

 
10 

 
20% 

OLS 1.552e+86 4040.706 4041.916 53.75 230.6576 231.8679 
Robust M 1.092e+84 4011.935 4013.145 34.39 130.8485 132.0589 
Robust 
MM 

1.67 e+84 4031.416 4032.626 41.967 218.2964 219.5068 

 
20 

 
10% 

OLS 1.597e+86 8050.583 8054.566 172.8 269.0023 272.9853 
Robust M 2.363e+84 8005.886 8009.869 142.6 259.1937 263.1766 
Robust 
MM 

4.604e+84 8042.47 8046.453 154.624 264.8608 268.8437 

 
40 

 
5% 

OLS 9.286e+84 16165.21 16171.96 139 516.682 523.235 
Robust M 3.063e+84 15988.06 15994.82 106 516.4619 523.2175 
Robust 
MM 

1.681e+84 16042.6 16049.36 124.82 516.4986 523.229 
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The average values of MSE, AIC and BIC recorded in table 15 revealed that Robust MM was the 
best estimators because it has the minimum values of the three criteria used for the 
assessment followed by Robust M while OLS has the least performance among the three at 
sample size different sample sizes and percentages of outlier. However the three estimators 
have close  criteria values at the largest sample size in polynomial model and they all perform 
better at lower sample size compare with other sample sizes.  

Table 16: Performance of Estimators on Three Outliers in the Explanatory Variables with 
Cauchy Error Distribution 

 
n 

% of 
Outliers 

Model Exponential Polynomial 
Estimator MSE AIC BIC MSE AIC BIC 

 
10 

 
30% 

OLS 1.583e+86 4037.088 4038.298 53.3 131.851 132.9613 
Robust M 1.695e+84 4030.235 4031.446 38.14 131.1055 132.3158 
Robust MM 1.012e+84 4020.838 4022.049 31.508 129.9711 131.1815 

 
20 

 
10% 

OLS 6.074e+86 8038.95 8045.933 175.7 259.9977 263.9807 
Robust M 7.342e+84 8037.229 8041.212 137.1 259.2244 263.2074 
Robust MM 5.337e+84 8029.204 8033.187 135.685 242.9638 246.9467 

 
40 

 
8% 

OLS 9.495e+84 16038.69 16045.94 138.8 516.5891 523.1446 
Robust M 3.44e+84 16038.12 16044.87 108.4 516.5176 523.2731 
Robust MM 1.865e+84 16037.81 16044.57 102.48 516.1949 523.0005 

 
It was observed from table 16 that Robust MM is the best estimator over the sample sizes and 
percentages of outlier based on all criteria for both exponential and polynomial models. 
However, the three estimators have closed AIC and BIC values in polynomial models. 

4 Conclusions 

This study has revealed that the OLS was the best when there is no outlier in the explanatory 
variables and the error distribution is normal. However, robust M is the best in exponential, 
uniform and Cauchy error distributions without outlier in the explanatory variables at lower and 
moderate sample sizes while OLS and Robust MM are the best respectively at larger sample size. 
Robust M is the best estimator when there are outliers in the explanatory variables the and error 
distribution is normal while MM is the most robust estimator when there is outliers and error 
distributions are no normal from both exponential and polynomial models. Meanwhile, OLS still 
maintain a good estimator when there is little percentage of outliers in the explanatory variables of 
the nonlinear model while error distribution is normal. 
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