Network for Research and Development in Africa

International Journal of Pure and Applied Science Research ISSN: 2384-5918. Volume 13, Number 1 Pages 1-22 (January, 2023) DOI: 45727711311 www.arcnjournals.org

Robust Estimation in Nonlinear Regression Models under Various Contamination Schemes of Error Distribution

M. J Madubu¹, P.N Dibal² and I. Akeyede³

¹Department of Statistics, Ramat Polytechnic Maiduguri ²Department of Mathematical Sciences, University of Maiduguri, Maiduguri, Nigeria ³Department of Statistics, Federal University of Lafia, PMB 146, Lafia, Nigeria Email: madubujoseph@gmail.com

Abstract: Nonlinear regression is one of the most popular and widely used models in analyzing the effect of explanatory variables on a response variable and it has many applications in sciences. With the presence of outliers or influential observations in the data, the ordinary least squares method can result in misleading values for the parameters of the nonlinear regression and the hypothesis testing, and predictions may no longer be reliable. The main purpose of this study is to determine the more robust estimator that gives flexible results, between robust M and robust MM to estimate the parameter of nonlinear regression model from data that contain influential observations / outliers at different error distributions. Monte Carlo simulations were performed to evaluate the robustness of M and MM methods in comparison with the Ordinary Least Squares method. The performances of the estimators were measured using AIC, BIC, and MSE criteria. The effect of sample sizes was also examined for different levels of contaminations and error distributions. The study concluded that the robust M is the best in exponential, uniform and Cauchy error distributions without outlier in the explanatory variables at lower and moderate sample sizes while OLS and Robust MM are the best respectively at larger sample size. Robust M is the best estimator when there are outliers in the explanatory variables and error distribution is normal while robust MM is most robust estimator when there are outliers and error distributions are non normal from both exponential and polynomial models.

Keywords: M estimator, MM estimator, error distribution, simulation.

1.0 Introduction

In robust statistics, robust regression is a form of regression analysis designed to overcome some limitations of traditional parametric and non-parametric methods. An estimator or statistical procedure is robust if it provides useful information even if some of the assumptions

used to justify the estimation method are not applicable. Regression analysis seeks to find the relationship between a dependent variable and one or more independent variables. Efficient estimation of parameters of nonlinear regression models is a fundamental problem in applied statistics. The nonlinear least squares estimators are sensitive to presence of outliers in the data and other departures from the underlying distributional assumptions. Nonlinear regression techniques are used for parameter estimation in many scientific data where models must be calibrated to data.

The main purpose of robust nonlinear regression is to fit a model to the data that gives robust results in the presence of influential observations, leverage points and/or outliers. Rousseeuw and Leroy (1987) defined vertical outliers as those data points with outlying values in the direction of the response variable, while leverage points are outliers in the direction of covariates. An observation may be influential if its removal would significantly alter the parameter estimates. Edgeworth (1987) proposed the Least Absolute Deviation as a robust method. Huber (1973) introduced the method of M-estimation. Rousseeuw (1984) introduced the Least Trimmed Square estimates. The S-estimator was introduced by Rousseeuw and Yohai (1984). Yohai and Zammar (1988) introduced the τ -estimator of linear regression coefficients. It is a high efficiency estimator and has a high breakdown point. Tabatabai and Argyros (1993) extended the τ -estimator of nonlinear regression models. Stromberg (1993) introduced algorithms for Yohai's MM estimator of nonlinear regression and Rousseeuw's least median estimators of nonlinear regression.

Despite their superior performance over least squares estimation in many situations, robust methods for regression are still not widely used. Several reasons may help explain their unpopularity (Hampel et al. 1986, 2005). Other possible reasons are; there are several competing methods (Andersen, 2008) and computation of robust estimates is much more computationally intensive than least squares estimation. In recent years, however, this objection has become less relevant, as computing power has increased greatly. Another reason may be that some popular statistical software packages failed to implement the methods (Stromberg, 2004).

Although commitment of robust methods has been slow, modern mainstream statistics text books often include discussion of these methods [for example, the books by Seber and Lee (2003), and by Faraway (2004)]; for a good general description of how the various robust regression methods developed from one another see Andersen's (2008). Also, modern statistical software packages such as R, Stats models, Stata and S-PLUS include considerable functionality for robust estimation [Maronna et al (2006)].

Tolga and Hassan (2018) considered a modified ratio estimator using robust regression methods when there is outliers in the set of data; in order to solve the problem of Kadilar et al (2007) adopted Huber M method which is only one of robust regression method to ratio type's

estimators and decreased the effect of the outlier problem. The theoretical results are supported with the aids of numerical examples and simulations by basing on data that includes an outlier.

Furthermore, Aamir et al (2019) suggested a new robust estimator with respect to non-normal distribution. In this study they observed some situations in which modified maximum likelihood estimation becomes in appropriate to develop the robust and efficient estimator of the population mean. A robust shrinkage range estimation algorithm based on Hampel and Skepped filter was presented by Chee-Hyun and Joon-Hyuk (2019). They demonstrated that the estimation accuracy of the proposed method is higher than those of the existing median based shrinkage methods through extensive simulation.

The commonly used estimators are: Stein Estimator by Stein (1956), Liu Estimator by Liu (1993) and Ridge Estimator proposed by Hoerl and Kennard (1970) which are more efficient than OLS when there is collinearity in two or more explanatory variables. Robust regression can be used in any situation where least squares regression could be used. Frequently, data sets contains outliers which are not errors of measurement but representative outliers, hence there is no reason to exclude them from the analysis.

Therefore, in this study, the performance of least squares estimator and robust estimators (mestimator and mm-estimator) in nonlinear regression models under various contamination schemes of error distribution were examined.

2. Methodology

The performance of the estimators was measured using Akaike information criterion (AIC), Bayesian information criterion (BIC), and Mean Square error (MSE). The contaminations were considered in the explanatory variables and different error distributions. The effect of sample size was also examined for different levels of contaminations. Simulations were conducted using R Statistical software by specifying the parameter values to the models under different sample sizes and the estimators. The models to be used in simulating data are exponential and polynomial functions given in equations (1) and (2).

2.1 Model Specification and Generation of Data for Simulations

The models considered for the simulation are:

$$y_{i} = \beta_{0} + \exp[\beta_{1}x_{1i} + \beta_{2}x_{2i}] + e_{i}, \quad i = 1, 2 \dots, n$$

$$y_{i} = \beta_{0} + \beta_{1}x_{1}^{2} + \beta_{2}x_{2}^{2} + e_{i}, \quad i = 1, 2 \dots, n$$
(1)
(2)
Where w is dependent variable, x_{i} and x_{i} are two independent variables, $e_{i} = 0, 1, 2$ are

Where, y_i is dependent variable, x_1 and x_2 are two independent variables, β_j , j = 0,1,2 are parameters of the regression and e_i is random error. Random values will be simulated for the

two explanatory variables from Normal distribution. This will be followed by injecting outlier to the explanatory variables. The error term will be generated differently from Normal, Exponential, Cauchy, and Uniform distributions. The codes for each case of simulation; parameter and sample sizes fixed for the simulation are discussed in subsequent sections.

For the simulation study, the parameters of nonlinear models are fixed as $\beta_0=1$, $\beta_1=1$ and $\beta_2=1$. The sample sizes used for the simulation of data are; 10, 20 and 40. At a particular choice of sample size, the simulation study will be performed 1000 times for different forms of nonlinear models in equations (1) and (2). The disturbances or error terms will be generated from normal distribution with mean 0 and variance 1 and other non-normal distributions (exponential, uniform and Cauchy distributions) as follows:

 $e_i \sim N(0, 1), e_i \sim \exp(1), e_i \sim U(0, 1) \text{ and } e_i \sim \operatorname{cauch}(0, 1)$

The explanatory variables of equations (1) and (2) were generated with the injection of outliers as follows;

X₁=c(rnorm(n-1, 0, 1), rnorm(1, 100, 1))

X₂=c(rnorm(n-1,0,1),rnorm(1,100,1))

X₁=c(rnorm(n-2, 0,1),rnorm(2, 100,1))

X₂=c(rnorm(n-2,0,1),rnorm(2,100,1))

X₁=c(rnorm(n-3, 0,1),rnorm(3, 100,1))

X₂=c(rnorm(n-3,0,1),rnorm(3,100,1))

This shows number of outliers introduced are 1, 2 and 3 from second form of normal distribution in the explanatory variables. These form 10% of sample size of 10, 5% of sample size of 20 and 3% of sample size of 40, when one outlier is introduced. 20% of sample size of 10, 10% of sample size of 20 and 5% of sample size of 40, when two outliers are introduced.30% of sample size of 10, 15% of sample size of 20 and 8% of sample size of 40, when three outliers is introduced. Note that each case of simulations will be performed 1000 times to form 1000 iterations.

2.3 OLS Estimator Procedure for Nonlinear Regression model parameter estimation Methods

For the purpose of this study, the nonlinear regression model considered is as follows:

$$Y_{i} = f(\beta_{1i}X_{1i} + \beta_{2i}X_{2i} + \dots + \beta_{pi}X_{pi}) + e_{i}, \qquad i = 1, \dots, n$$

$$Y = (Y_{1}, \dots, Y_{p})'$$

$$X_{i} = (X_{1i}, \dots, X_{pi})', \quad i = 1, \dots, n$$
(3)

Y is the vector variable observed for ith measurement, f is a given nonlinear function (say, polynomial or exponential) and $(e_{1i}, ..., e_n)'$ are the vector of random regression errors (disturbances). The model (3) can be expressed as

$$Y_i = f(X'_i\beta) + e_i$$
(4)

The aim of the analysis is to estimate the regression parameters

$$\beta_i = (\beta_1, \dots, \beta_p)'. \tag{5}$$

Nonlinear regression models have found numerous econometric applications e.g. in the analysis of cross-section data or financial time series (Chang et al, 2002)

The most common estimator of parameters in the nonlinear model (1) is the nonlinear least square (NLS) estimator. Utilizing the Ordinary Least Squares (OLS) method for the nonlinear model (3), the estimator (β) is found by minimizing the sum of squared residuals:

$$\min \sum_{i=1}^{n} (e_i)^2, where \ e_i = y_i - \hat{y}_i$$
(6)

$$\min \sum_{i=1}^{n} (Y_i - f(X'_i \beta))^2$$
(7)

This gives the OLS estimator for (β) as:

$$\hat{\beta}_{OLS} = f^{-1}[(X'X)]X'Y \tag{8}$$

Overall possible values

$$\hat{\beta}_i = (\beta_1, \dots, \beta_p)' \epsilon R \tag{9}$$

The OLS estimate is expected to be optimal when the error distribution is assumed to be normally distributed with mean zero and positive variance. Using the OLS estimator should be accompanied by verifying its assumptions and its diagnostic tools are well known. Nevertheless, the estimator suffers from a high vulnerability with respect to the presence of outliers in the data. While various robust estimators are available for the linear regression model, most of them do not allow to be extended to the nonlinear model. The principle of Nonlinear Robust M (NRM) and Nonlinear Robust S (NRS) estimators will be investigated in relation with Nonlinear Least Square estimators under different conditions.

2.4 M-Estimation

Linear least-squares estimates can behave badly when the error distribution is not normal, particularly when the errors are heavy-tailed. One remedy is to remove influential observations from the least-squares fit. Another approach, termed robust regression, is to use a fitting criterion that is not as vulnerable as least squares to unusual data. The most common general method of robust regression is M-estimation, introduced by Huber (1973). This class of estimators can be regarded as a generalization of maximum-likelihood estimation, hence the term "M-estimation".

Let's recall and consider the nonlinear model (3)

$$Y_{i} = f(\beta_{1i}X_{1i} + \beta_{2i}X_{2i} + \dots + \beta_{pi}X_{pi}) + e_{i}, \qquad i = 1, \dots, n$$

and the residuals are given by $e_i = y_i - \hat{y}_i$

With M-estimation, the estimates β are determined by minimizing a particular objective function over all β ,

$$\sum_{i=1}^{n} \rho(e_i) = \sum_{i=1}^{n} \rho(y_i - x'_i \beta) \in \mathcal{R}$$
(10)

Where the function ρ gives the contribution of each residual to the objective function. A reasonable ρ should have the following properties:

- i. always nonnegative, $\rho(e_i) \ge 0$
- ii. equal to zero when its argument is zero, $\rho(0) = 0$
- iii. symmetric, $\rho(e_i) = \rho(-e_i)$
- iv. monotone in $|e_i|$, $\rho(e_i) \ge \rho(e_i')$ for $|e_i| > |e_i'|$

For example, the least-squares ρ -function $\rho(e_i) = e_i^2$ satisfies these requirements, as do many other functions. Let $\psi = be \rho'$ the derivative of ρ . ψ is called the influence curve. Differentiating the objective function with respect to the coefficients β and setting the partial derivatives to 0, produces a system of k + 1 estimating equations for the coefficients:

$$\sum_{i=1}^{n} \Psi(y_i - x_i'\beta)x_i' = 0$$
(11)

Define the weight function w (e) = ψ (e)/e, and let w_i = w(e_i).

Computing the estimating equations may be written as

$$\sum_{i=1}^{n} w_i (y_i - x_i' \beta) x_i' = 0$$
(12)

Solving these estimating equations is equivalent to a weighted least-squares problem, minimizing

$$\sum_{i=1}^{n} w_i^2 = 0$$
(13)

The weights, however, depend upon the residuals, the residuals depend upon the estimated coefficients, and the estimated coefficients depend upon the weights. An iterative solution (called iteratively reweighted least-squares, IRLS) is therefore required:

- i. Select initial estimates $\beta^{(0)}$, such as the least-squares estimates.
- ii. At each iteration t, calculate residuals e_i^{t-1} and associated weights $w_i^{t-1} = w[e_i^{t-1}]$ from the previous iteration.
- iii. Solve for new weighted-least-squares estimates

$$\beta^{(t)} = \left[X' W^{(t-1)} X \right]^{-1} X' W^{(t-1)} y \tag{14}$$

Where X is the model matrix, with x'_i as its ith row, and $W^{(t-1)} = \text{diagn}[W^{(t-1)}]$ is the current weight matrix.

Steps 2 and 3 are repeated until the estimated coefficients converge. The asymptotic covariance matrix of $\boldsymbol{\beta}$ is

$$\beta^{(t)} v(\beta) = \frac{E(\psi^2)}{[E(\psi')]^2} (X'X)^{-1}$$
(15)

Using $\sum_{i=1}^{n} [\psi(e_i)]^2$ to estimate $E(\psi^2)$, and $\left[\sum_{i=1}^{n} \frac{\psi'(e_i)}{n}\right]^2$ to estimate $[E(\psi')]^2$ produces the estimated asymptotic covariance matrix, $\hat{v}(\beta)$ (which is not reliable in small sample).

2.5 MM Estimators

MM estimators (Yohai, 1987) reach a high level of robustness as well as high (tunable) efficiency, by combining the properties of M estimators and S estimators. Let $\widehat{\beta_0}$ be an S estimator, and let $\widehat{\sigma}$ be the corresponding M estimator of scale, solving for $\beta = \widehat{\beta_0}$. The MM estimator is then defined as local solution of

$$\beta_{MM} = \min_{\beta} \sum_{i=1}^{n} \rho\left(\frac{r_i\beta}{\widehat{\sigma}}\right) \tag{16}$$

Obtained with IRWLS and initial value $\widehat{\beta_0}$. An implementation of MM estimators is available in the package MASS (function rlm).

MM-estimation attempts to retain the robustness and resistance of S-estimation, while gaining the efficiency of M-estimation. The method proceeds by finding a highly robust and resistant S-estimate that minimizes an M-estimate of the scale of the residuals (the first M in the method's name). The estimated scale is then held constant whilst a close by M-estimate of the parameters is located (the second M).

3. Data Analysis and Results

Table 1: Performance of Estimators when Error Distribution is Normal

Sample	Model	Exponent	ial		Polynom	ial	
Size	Estimator	MSE	AIC	BIC	MSE	AIC	BIC
10	OLS	0.8865	46.49962	47.7099 6	1.051	43.69414	44.90448
	Robust M	0.6269	47.53322	48.7435 6	1.092	44.02461	45.23495
	Robust MM	0.5553	50.44593	51.6562 7	1.236	46.31082	47.52117
20	OLS	1.531	98.00129	101.984 2	2.036	88.33785	92.32078
20	Robust M	0.9252	100.8508	104.833 7	2.705	89.10289	93.08582
	Robust MM	0.9159	104.6038	108.586 7	1.723	91.79753	95.78046
40	OLS	1.489	208.7867	215.542 3	1.517	177.6032	184.3588
	Robust M	1.038	214.8528	221.608 3	1.186	178.8611	185.6167
	Robust MM	1.127	220.6504	227.405 9	1.108	181.6315	188.387

Table 1 above shows the relative performance of the three estimators under different criteria of selection at different sample size when the error term is generated from normal distribution. From the table, it is observed that OLS is the best at different sample sizes especially on the basis of AIC and BIC criteria for both exponential and polynomial models. This is followed by Robust M as the second best in terms of all criteria.

Sample	Model	Exponer	ntial		Polynomi	al	
Size	Estimator	MSE	AIC	BIC	MSE	AIC	BIC
	OLS	0.5313	40.2890	41.49938	1.616	40.1761	41.3864
10			4			3	7
	Robust M	0.274	40.0101	40.22044	2.024	40.5937	41.8040
						2	6
	Robust MM	0.2825	48.3013	49.51169	0.7581	34.6789	35.8892
			5			2	6
	OLS	1.743	91.7620	95.74499	1.226	82.5889	86.5719
20			6			7	
	Robust M	0.274	86.1931	90.176	0.916	80.7644	80.7473
						4	7
	Robust MM	0.3063	104.958	108.9415	0.3766	80.1930	80.1759
			6			3	6
	OLS	0.147	201.087	207.8426	1.559	166.806	173.562
40			1			6	1
	Robust M	1.441	209.955	216.7108	1.777	168.725	175.480
			2			3	9
	Robust MM	0.734	221.107	200.8633	1.11	164.475	161.230
			8			1	6

 Table 2: Performance of Estimators when Error Distribution is Exponential

The table 2 shows that Robust M has the lowest values of MSE, AIC and BIC for exponential model at sample sizes of 10 and 20 while robust MM has the lowest values in the three criteria from polynomial model at the same sample sizes and therefore they can be classified as the best respectively. However at the largest sample size of 40, The OLS seems to be the best estimator based all the criteria for both model

Sample	Model	Exponer	ntial		Polynomi	al	
Size	Estimator	MSE	AIC	BIC	MSE	AIC	BIC
	OLS	0.4629	49.7533	49.96368	0.4204	46.1787	47.3891
10			3			9	3
	Robust M	0.4024	42.2499	43.46025	0.2533	40.5720	41.7824
			1			6	
	Robust MM	0.4395	47.0481	48.25844	0.3082	44.5313	45.7416
						1	5
	OLS	2.538	89.5780	96.56098	3.1175	89.7771	96.6598
20			5				
	Robust M	0.341	83.7255	87.70844	2.341	83.7255	87.7084
			2				4
	Robust MM	1.267	88.3430	92.326	1.267	88.3430	92.326
			7			7	
	OLS	4.895	200.012	206.7678	1.478	167.207	173.963
40			3			8	3
	Robust M	0.743	208.418	215.1741	1.078	169.019	175.775
			5			6	1
	Robust MM	0.4071	218.286	225.0418	0.8408	175.734	182.49
			3			5	

Table 3: Performance of Estimators when Error Distribution is Uniform

The average values of MSE, AIC and BIC recorded in table 3 revealed that Robust M was the best estimators because it has the minimum values of the three criteria used for the assessment followed by Robust MM while OLS has the least performance among the three at sample size of 10 and 20. However the OLS supersedes their performances as the sample size increases to 40

Sample	Model	Exponer	ntial		Polynomi	al	
Size	Estimator	MSE	AIC	BIC	MSE	AIC	BIC
	OLS	0.9980	71.8571	78.06748	1.8928	69.3786	69.5889
10			4				4
	Robust M	0.9526	67.9747	69.18509	1.157	66.2970	67.5073
			5			4	8
	Robust MM	0.7945	69.8290	71.03935	0.8907	67.8741	69.0844
			1			4	8
	OLS	6.265	149.318	154.3018	4.776	149.241	151.224
20			9			6	6
	Robust M	3.349	145.479	149.4626	2.91	140.763	144.746
			7			8	7
	Robust MM	3.445	147.295	151.2786	3.417	141.886	145.869
			6			3	2
	OLS	4.783	317.764	328.5203	1.977	305.859	319.614
40			8				5
	Robust M	1.461	314.970	321.7257	1.539	304.786	311.541
			2			1	6
	Robust MM	1.544	313.665	320.4209	1.013	303.439	310.194
			4			3	8

Table 4: Performance of Estimators when Error Distribution is Cauchy

The average values of MSE, AIC and BIC recorded in table 4. From the graphs, Robust M was the best estimators followed by Robust MM while OLS has the least performance among the three at sample size of 10 and 20. The robust MM is the best at sample size of 40 which is also followed by robust M. The gap between their performances increases relatively most especially as sample size increases.

	% of	Model	Exponential			Polynor	nial	
N	Outliers	Estimator	MSE	AIC	BIC	MSE	AIC	BIC
		OLS	2.527 e+84	4933.26	4934.47	32.60	230.314	231.5244
10	10%			4	5		1	
		Robust M	1.239e+84	3933.47	3934.68	1.350	130.519	131.7301
							8	
		Robust MM	1.26 e+84	4014.38	4015.59	1.546	211.434	212.6447
				2	3		4	
		OLS	9.954e+84	8862.42	8866.40	97.38	267.988	271.9718
20	5%			1	4		9	
		Robust M	8.787e+84	7862.58	7866.56	86.67	258.153	262.136
				6	9			
		Robust MM	1.042+84	8005.41	8009.40	86.84	400.983	404.9668
				9	2	6	9	
		OLS	3.776e+84	15719.9	15726.7	95.83	513.366	520.1215
40	3%			6	2			
		Robust M	4.333e+84	15720.0	15726.8	109.9	513.490	520.2457
				8	4		2	
		Robust MM	5.127+84	15973.7	15980.4	1.108	766.222	772.9778
				3	9		3	

 Table 5: Performance of Estimators on One Outlier in the Explanatory Variables

Table 5 shows the results of the three estimators on the two forms of nonlinear regression when only one outlier is introduced to the explanatory variables and error distribution is normal. From the table, Robust M is the best estimators to estimate both exponential and polynomial form of the models followed by Robust MM while OLS has the least performance at the sample size of 10 and 20 where the outlier form 10 and 5% of the sample size respectively. However as sample size increases to 40 and outlier forms just 3%, the OLS supersedes the two robust estimators in performance

	% of	Model	Exponentia			Polynomial			
n	Outliers	Estimator	MSE	AIC	BIC	MSE	AIC	BIC	
		OLS	1.184e+86	4070.53	4081.74	130.00	230.402	231.6123	
10	20%	Robust M	4.728e+83	4011.774	4012.984	58.61	130.5864	131.7967	
		Robust MM	1.722+84	4032.255	4033.466	61.888	218.37	219.5803	
		OLS	1.438e+86	8060.475	8064.458	97.29	358.0574	362.0403	
20	10%	Robust M	9.363e+84	8005.739	8009.721	86.25	258.2226	262.2055	
		Robust MM	1.042+86	8042.066	8046.049	91.846	314.8779	318.8609	
		OLS	6.005e+85	16973.56	16980.31	194.39	813.5445	820.3	
40 5	5%	Robust M	1.991e+84	15996.58	16003.34	102.6	513.6858	520.4413	
		Robust MM	1.192+84	16043.36	16050.11	111.17	793.9592	800.7148	

 Table 6: Performance of Estimators on two Outliers in the Explanatory Variables

Table 6 shows the results of the two sestimators on the two forms of nonlinear regression when two outliers is introduced to the explanatory variables and error distribution is normal. From the table, Robust M is the best estimators to estimate both exponential and polynomial form of the models followed by Robust MM while OLS has the least performance at all sample sizes

	% of	Model	Exponentia			Polynom	ial	
n	Outliers	Estimator	MSE	AIC	BIC	MSE	AIC	BIC
		OLS	2.088e+8	4077.02	4078.23	117.6	230.390	231.600
10	30%		6	6	6		5	8
		Robust M	1.308e+8	4030.19	4031.40	77.39	130.656	131.866
			4	6	6		2	6
		Robust MM	3.254+84	4041.01	4042.22	83.573	222.415	223.625
				1	2		4	7
		OLS	2.942e+8	8071.90	8075.88	119.51	458.039	462.022
20	10%		6	4	7		7	7
		Robust M	6.689e+8	8037.14	8041.12	115.1	258.236	262.219
			4	5	8		9	8
		Robust MM	7.042+84	8058.59	8062.57	117.84	422.979	426.962
					3	6	1	
		OLS	6.051e+8	16099.3	16096.1	194.11	813.675	820.431
40	8%		5	6	2		5	1
		Robust M	3.447e+8	16038.4	16045.1	101.7	513.842	520.597
			4	2	7		2	7
		Robust MM	4.192+84	16079.7	16086.4	1.17	810.183	816.938
					6		2	7

 Table 7: Performance of Estimators on Three Outliers in the Explanatory Variables

It was observed from the table 7, when three outliers are introduced into the explanatory variables of the two nonlinear functions and the error distribution is normal, that Robust M is the best estimator for both models at all sample sizes and outlier proportions. This is followed by Robust MM and the least performing estimator is OLS

	% of	Model	Exponentia			Polynomial			
n	Outliers	Estimator	MSE	AIC	BIC	MSE	AIC	BIC	
		OLS	5.343e+84	3934.626	3936.836	110.9	132.4273	132.6376	
10	10%	Robust M	5.566e+84	3932.842	3934.053	105.2	130.6431	131.8535	
		Robust MM	1.6641+84	3013.62	3014.831	101.342	111.4204	112.6307	
		OLS	5.683e+84	7864.55	7866.532	113.3	259.3344	264.3173	
20	5%	Robust M	4.033e+84	7861.71	7865.693	80.61	258.4946	262.4775	
		Robust MM	1.3835+84	7004.194	7008.177	80.4869	200.9711	204.9541	
		OLS	3.455e+84	15727.48	15733.24	153.5	515.3371	522.0926	
40	3%	Robust M	2.175e+84	15725.62	15732.37	126.2	513.4701	520.2257	
		Robust MM	1.7349+84	15080.64	15087.4	111.18	766.2885	773.044	

Table 8: Performance of Estimators on One Outlier in the Explanatory Variables withExponential Error Distribution

Table 8 presents the results of the estimators when one outlier is introduced to both exponential and polynomial models at different sample sizes, where error term is exponential. The best estimator is observed at the lowest sample sizes for all estimators. While Robust MM is the best performing estimator at different proportions of outliers and levels of sample size, the OLS is the least

Table 4.9:	Performance	of Estimators	on	two	Outliers	in	the	Explanatory	Variables	with
Exponential Error Distribution										

	% of	Model	Exponentia			Polynomial			
n	Outliers	Estimator	MSE	AIC	BIC	MSE	AIC	BIC	
	10 20%	OLS	8.044e+85	4008.049	4009.259	106.8	130.3027	131.5131	
10		Robust M	6.832e+84	4003.242	4003.452	69.33	120.5003	121.7107	
		Robust MM	1.105+84	4001.058	4001.268	62.176	118.3473	119.5576	
		OLS	4.159e+85	8009.059	8009.042	112.3	258.3037	262.2866	
20	10%	Robust M	3.711e+84	8004.395	8008.378	71.12	228.4714	232.4543	
		Robust MM	1.4766+84	8002.61	8003.593	61.486	214.8473	218.8303	
		OLS	1.663e+85	15962.56	15969.31	153	513.2792	520.0347	
40	5%	Robust M	3.2e+84	15985.69	15992.45	186.6	513.4252	510.1807	
	F	Robust MM	2.7984+84	16045.49	16052.24	1.281	793.9951	500.7506	

Table 9 presents the results of the estimators when two outliers are introduced to both exponential and polynomial models at different sample sizes, where error term is exponential. The best estimator is observed at the lowest sample sizes for all estimators. While Robust MM

is the best performing estimator at different proportions of outliers and levels of sample size the OLS is the least

	% of	Model	Exponential			Polynon	nial	
n	Outliers	Estimator	MSE	AIC	BIC	MSE	AIC	BIC
		OLS	1e+86	4045.599	4046.809	109.4	135.2653	135.4756
10	30%	Robust M	2.056e+84	4028.714	4029.924	86.51	130.5021	131.7125
		Robust MM	2.078+84	4039.603	4040.813	5.046	222.4064	223.6168
		OLS	1.548e+86	8061.515	8065.498	113	458.4382	462.4211
20	10%	Robust M	5.833e+84	8036.779	8040.761	71.97	258.6482	262.6311
		Robust MM	5.883+84	8057.478	8061.461	76.74	422.9579	426.9408
		OLS	2.694e+86	16088.01	16084.76	154.4	813.2973	820.0528
40	8%	Robust M	4.479e+84	16037.46	16044.22	186.8	513.4612	520.2167
		Robust MM	8.713+84	16079.83	16086.59	111.28	810.2022	816.9577

Table	10:	Performance	of	Estimators	on	Three	Outliers	in	the	Explanatory	Variables	with
Exponential Error Distribution												

From table 4.10, Robust M has minimum values of MSE, AIC and BIC and it is therefore the best among other estimators at different sample sizes and percentages of outlier. All estimators are observed to be the best at lower sample sizes. The least performing estimator from both models with three outliers on their explanatory variables is OLS due to its highest value of the three criteria

Table 11: Performance	of Estimators	on On	e Outlier	in the	Explanatory	Variables	with
Uniform Error Distributio	n						

	% of	Model	Exponentia	l		Polynom	ial	
n	Outliers	Estimator	MSE	AIC	BIC	MSE	AIC	BIC
		OLS	2.818e+84	3932.771	3933.981	60.33	130.2461	131.4565
10	10%	Robust M	1.346e+84	3732.97	3734.181	28.61	120.4458	121.6562
		Robust	6.466+82	3013.951	3015.161	20.3083	111.4233	112.6336
		MM						
		OLS	1.189e+84	7863.742	7867.725	166.8	258.1085	262.0914
20	5%	Robust M	8.567e+83	7463.9	7467.883	123.2	238.2676	242.2505
		Robust	5.561+82	7006.628	7010.61	111.521	200.9879	204.9708
		MM						
		OLS	3.797e+84	15723.02	15729.77	139.8	513.155	519.9105
40	3%	Robust M	2.957e+84	15223.16	15229.91	107.8	512.2932	513.0487
		Robust	4.071+82	15071.81	15078.56	100.942	506.2066	507.9621
		MM						

The average values of MSE, AIC and BIC recorded in table 11 revealed that Robust MM was the best estimators because it has the minimum values of the three criteria used for the assessment followed by Robust M while OLS has the least performance among the three at sample size different sample sizes and percentages of outlier.

 Table 12: Performance of Estimators on two Outliers in the Explanatory Variables with

 Uniform Error Distribution

	% of	Model	Exponentia			Polynon	nial	
n	Outliers	Estimator	MSE	AIC	BIC	MSE	AIC	BIC
		OLS	1.552e+86	4010.706	4011.916	53.39	131.3336	132.5439
10	20%	Robust M	1.092e+84	4001.935	4010.145	34.5	130.0132	131.7236
		Robust MM	8.253+84	4001.416	4002.626	0.3083	118.3526	119.563
		OLS	1.597e+86	8000.583	8004.566	172.3	258.0792	262.0622
20	10%	Robust M	2.363e+84	8005.886	8003.869	143	238.2402	252.2231
		Robust MM	7.052+84	8002.47	8002.453	2.017	214.8651	118.8481
		OLS	9.286e+84	15965.21	15971.96	139.4	513.1691	519.9246
40	5%	Robust M	3.063e+84	15088.06	15964.82	107	512.3198	519.0753
		Robust MM	4.071+84	15042.6	15049.36	0.8958	503.9625	500.718

The average values of MSE, AIC and BIC recorded in table 12 revealed that Robust MM was the best estimators because it has the minimum values of the three criteria used for the assessment followed by Robust M while OLS has the least performance among the three at sample size different sample sizes and percentages of outlier.

	% of	Model	Exponentia			Polynomial			
n	Outliers	Estimator	MSE	AIC	BIC	MSE	AIC	BIC	
		OLS	1.583e+86	4067.088	4068.298	52.97	230.4995	231.7098	
10	30%	Robust M	1.605e+84	4030.235	4031.446	38.24	130.7385	131.9489	
		Robust	1.656+84	4040.838	4042.049	41.33	222.4104	223.6207	
		MM							
		OLS	6.074e+86	8061.95	8065.933	175.4	358.0405	362.0235	
20	10%	Robust M	7.342e+84	8037.229	8041.212	134.5	258.2377	262.2206	
		Robust	7.052+84	8059.204	8063.187	142.017	262.9705	266.9535	
		MM							
		OLS	9.495e+84	16068.69	16065.44	139.2	813.2029	819.9584	
40	8%	Robust M	3.44e+84	16038.12	16044.87	109.3	513.3757	520.1312	
		Robust	4.392+84	16077.81	16084.57	0.9473	810.1729	816.9284	
		MM							

 Table 13: Performance of Estimators on Three Outliers in the Explanatory Variables with

 Uniform Error Distribution

From table 13, Robust M has minimum values of MSE, AIC and BIC and it is therefore the best among other estimators at different sample sizes and percentages of outlier followed by robust MM. All estimators are observed to be the best at lower sample sizes. The least performing estimator from both models with three outliers on their explanatory variables is OLS due to its highest value of the three criteria

	% of	Model	Exponentia			Polynomial			
n	Outliers	Estimator	MSE	AIC	BIC	MSE	AIC	BIC	
		OLS	2.818e+84	4032.771	4033.981	60.62	230.5884	231.7987	
10	10%	Robust M	1.346e+84	3932.97	3934.181	30.54	130.8046	132.015	
		Robust MM	1.167e+84	4013.951	4015.161	31.142	211.4276	212.6379	
		OLS	1.189e+84	8063.74	8067.725	167.1	269.0667	273.0496	
20	5%	Robust M	8.567e+83	7863.9	7867.883	127	259.2553	263.2382	
		Robust MM	1.173e+84	8006.628	8010.61	3.889	260.9879	264.9708	
		OLS	3.797e+84	15723.02	15729.77	139.3	516.2296	522.9851	
40	3%	Robust M	2.957e+84	15723.16	15729.91	106.9	516.4058	523.1614	
		Robust MM	3.561+84	15971.81	15978.56	2.168	766.2833	773.0389	

Table 14: Performance of Estimators on One Outlier in the Explanatory Variables with CauchyError Distribution

The average values of MSE, AIC and BIC presented in table 14, shows that the robust M is the best estimator at sample sizes of 10 and 20 with 10% and 20% respectively due to its minimum values of the criteria, this is followed by Robust MM. However, as sample size is getting larger (when sample size is 40), OLS seems to have the minimum values of AIC and BIC and can be categorized as the best in that category due to very low percentage of outliers over the sample size. M estimator has the second performance while MM estimator is the least in that category

Table 15: Performance	e of	Estimators	on	two	Outliers	in	the	Explanatory	Variables	with
Cauchy Error Distribution	on									

	% of	Model	Exponentia			Polynom	ial	
n	Outliers	Estimator	MSE	AIC	BIC	MSE	AIC	BIC
		OLS	1.552e+86	4040.706	4041.916	53.75	230.6576	231.8679
10	20%	Robust M	1.092e+84	4011.935	4013.145	34.39	130.8485	132.0589
		Robust	1.67 e+84	4031.416	4032.626	41.967	218.2964	219.5068
		MM						
		OLS	1.597e+86	8050.583	8054.566	172.8	269.0023	272.9853
20	10%	Robust M	2.363e+84	8005.886	8009.869	142.6	259.1937	263.1766
		Robust	4.604e+84	8042.47	8046.453	154.624	264.8608	268.8437
		MM						
		OLS	9.286e+84	16165.21	16171.96	139	516.682	523.235
40	5%	Robust M	3.063e+84	15988.06	15994.82	106	516.4619	523.2175
		Robust	1.681e+84	16042.6	16049.36	124.82	516.4986	523.229
		MM						

The average values of MSE, AIC and BIC recorded in table 15 revealed that Robust MM was the best estimators because it has the minimum values of the three criteria used for the assessment followed by Robust M while OLS has the least performance among the three at sample size different sample sizes and percentages of outlier. However the three estimators have close criteria values at the largest sample size in polynomial model and they all perform better at lower sample size compare with other sample sizes.

	% of	Model	Exponential			Polynomial			
n	Outliers	Estimator	MSE	AIC	BIC	MSE	AIC	BIC	
		OLS	1.583e+86	4037.088	4038.298	53.3	nial AIC 131.851 131.1055 129.9711 259.9977 259.2244 242.9638 516.5891 516.5176	132.9613	
10	30%	Robust M	1.695e+84	4030.235	4031.446	38.14	131.1055	132.3158	
		Robust MM	1.012e+84	4020.838	4022.049	31.508	al AIC 131.851 131.1055 129.9711 259.9977 259.2244 242.9638 516.5891 516.5176 516.1949	131.1815	
		OLS	6.074e+86	8038.95	8045.933	175.7	259.9977	263.9807	
20	10%	Robust M	7.342e+84	8037.229	8041.212	137.1	259.2244	263.2074	
		Robust MM	5.337e+84	8029.204	8033.187	135.685	242.9638	246.9467	
		OLS	9.495e+84	16038.69	16045.94	138.8	516.5891	523.1446	
40	8%	Robust M	3.44e+84	16038.12	16044.87	108.4	516.5176	523.2731	
		Robust MM	1.865e+84	16037.81	16044.57	102.48	516.1949	523.0005	

 Table 16: Performance of Estimators on Three Outliers in the Explanatory Variables with

 Cauchy Error Distribution

It was observed from table 16 that Robust MM is the best estimator over the sample sizes and percentages of outlier based on all criteria for both exponential and polynomial models. However, the three estimators have closed AIC and BIC values in polynomial models.

4 Conclusions

This study has revealed that the OLS was the best when there is no outlier in the explanatory variables and the error distribution is normal. However, robust M is the best in exponential, uniform and Cauchy error distributions without outlier in the explanatory variables at lower and moderate sample sizes while OLS and Robust MM are the best respectively at larger sample size. Robust M is the best estimator when there are outliers in the explanatory variables the and error distribution is normal while MM is the most robust estimator when there is outliers and error distributions are no normal from both exponential and polynomial models. Meanwhile, OLS still maintain a good estimator when there is little percentage of outliers in the explanatory variables of the nonlinear model while error distribution is normal.

References

Aamir, S. Azaz, A. and Muhammed H. (2019). A new robust ratio with respect to non-normal distribution. Journal of Communication in Statistics-Theory and Methods.5(1), 22-31

Chee-Hyun, P. and Joon-Hyuk (2019). Robust shrinkage range estimation algorithm based On Hampel and Skipped filters. Journal of wireless communication and mobile computing (Hindawi 28(1), pp 78-87

Edgeworth F.Y, (1987). On observations relating to several quantities. Hermathena 6: 279-285. Faraway, J. J. (2004). Linear Models with R. Chapman & Hall/CRC

- Hoerl, A. E. and Kennard, R.W. (1970). Ridge Regression Biased Estimation for No Orthogonal Problems. Technometrics, 12, 55-67
- Hampel F.R, Ronchetti E.M, Rousseeuw P.J, Stahel WA (1986) Robust Statistics: The Approach Based on Influence Functions. New York: Wiley.
- Hampel, F.R.; E.M.Ronchetti; P.J.Rousseeuw; W.A. Stahel (2005) [1986]. Robust Statistics: The Approach Based on Influence Functions. Wiley
- Huber P.J (1973) Robust regression: asymptotics, conjectures, and Monte Carlo. Ann Stat 1: 799-821.
- Kadilar et al, (2007) Communication in statistics Theory and Methods, published on line 30th August 2007
- Liu, K. (1993). A new class of biased estimate in linear regression. Communication in Statistics. 22(2):393-402.
- Maronna, R.; D. Martin; V.Yohai (2006). Robust Statistics: Theory and Methods. Wiley
- Seber, G. A. F.; A. J. Lee (2003). Linear Regression Analysis (Second ed.). Wiley
- Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate Normal distribution. In Proceedings of the Third Berkeley symposium on mathematical statistics and probability, 1, 197–200.
- Stromberg, A. J. (2004). "Why write statistical software? The case of robust statistical methods". Journal of Statistical Software. 10 (5).
- Rousseuw PJ and Leroy AM (1987) Robust Regression and Outlier Detection. New York Wiley.
- Rousseeuw PJ (1984) Least median of squares regression. J Am Stat Assoc 79: 871-880.
- Rousseeuw PJ and Yohai VJ (1984) Robust regression by means of S estimators. In Robust and nonlinear time series analysis. Springer-Verlag 26: 256-274.
- Stromberg AJ (1993) Computation of high breakdown nonlinear regression parameters. Annals of Statistics 15: 642-656
- Tabatabai MA, Argyros IK (1993) Robust estimation and testing for general nonlinear regression models. Appl Math Comput 58: 85-101.
- Tolga, Z. and Hassan, B. (2018). Modified ratio estimators using robust regression methods. Journal of communication in Statistics-theory and methods 27(2), 54-78

Yohai VJ, Zamar RH (1988) High breakdown point estimates of regression by means of the minimization of an efficient scale. J Amer Statist Assoc 83: 406-413.