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Abstract: Nonlinear regression is one of the most popular and widely used models in analyzing the effect
of explanatory variables on a response variable and it has many applications in sciences. With the
presence of outliers or influential observations in the data, the ordinary least squares method can result
in misleading values for the parameters of the nonlinear regression and the hypothesis testing, and
predictions may no longer be reliable. The main purpose of this study is to determine the more robust
estimator that gives flexible results, between robust M and robust MM to estimate the parameter of
nonlinear regression model from data that contain influential observations / outliers at different error
distributions. Monte Carlo simulations were performed to evaluate the robustness of M and MM
methods in comparison with the Ordinary Least Squares method. The performances of the estimators
were measured using AIC, BIC, and MSE criteria. The effect of sample sizes was also examined for
different levels of contaminations and error distributions. The study concluded that the robust M is the
best in exponential, uniform and Cauchy error distributions without outlier in the explanatory variables
at lower and moderate sample sizes while OLS and Robust MM are the best respectively at larger sample
size. Robust M is the best estimator when there are outliers in the explanatory variables and error
distribution is normal while robust MM is most robust estimator when there are outliers and error
distributions are non normal from both exponential and polynomial models.

Keywords: M estimator, MM estimator, error distribution, simulation.

1.0 Introduction

In robust statistics, robust regressionis a form of regression analysis designed to overcome
some limitations of traditional parametric and non-parametric methods. An estimator or
statistical procedure is robust if it provides useful information even if some of the assumptions
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used to justify the estimation method are not applicable. Regression analysis seeks to find the
relationship between a dependent variable and one or more independent variables. Efficient
estimation of parameters of nonlinear regression models is a fundamental problem in applied
statistics. The nonlinear least squares estimators are sensitive to presence of outliers in the
data and other departures from the underlying distributional assumptions. Nonlinear
regression techniques are used for parameter estimation in many scientific data where models
must be calibrated to data.

The main purpose of robust nonlinear regression is to fit a model to the data that gives robust
results in the presence of influential observations, leverage points and/or outliers. Rousseeuw
and Leroy (1987) defined vertical outliers as those data points with outlying values in the
direction of the response variable, while leverage points are outliers in the direction of
covariates. An observation may be influential if its removal would significantly alter the
parameter estimates. Edgeworth (1987) proposed the Least Absolute Deviation as a robust
method. Huber (1973) introduced the method of M-estimation. Rousseeuw (1984) introduced
the Least Trimmed Square estimates. The S-estimator was introduced by Rousseeuw and Yohai
(1984). Yohai and Zammar (1988) introduced the t-estimator of linear regression coefficients. It
is a high efficiency estimator and has a high breakdown point. Tabatabai and Argyros (1993)
extended the t-estimates to the nonlinear regression models. Stromberg (1993) introduced
algorithms for Yohai’'s MM estimator of nonlinear regression and Rousseeuw’s least median
estimators of nonlinear regression.

Despite their superior performance over least squares estimation in many situations, robust
methods for regression are still not widely used. Several reasons may help explain their
unpopularity (Hampel et al. 1986, 2005). Other possible reasons are; there are several
competing methods (Andersen, 2008) and computation of robust estimates is much more
computationally intensive than least squares estimation. In recent years, however, this
objection has become less relevant, as computing power has increased greatly. Another reason
may be that some popular statistical software packages failed to implement the methods
(Stromberg, 2004).

Although commitment of robust methods has been slow, modern mainstream statistics text
books often include discussion of these methods [for example, the books by Seber and Lee
(2003), and by Faraway (2004)]; for a good general description of how the various robust
regression methods developed from one another see Andersen's (2008). Also, modern
statistical software packages such asR, Stats models, Stata and S-PLUS include considerable
functionality for robust estimation [ Maronna et al (2006)].

Tolga and Hassan (2018) considered a modified ratio estimator using robust regression
methods when there is outliers in the set of data; in order to solve the problem of Kadilar et al
(2007) adopted Huber M method which is only one of robust regression method to ratio type’s
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estimators and decreased the effect of the outlier problem. The theoretical results are
supported with the aids of numerical examples and simulations by basing on data that includes
an outlier.

Furthermore, Aamir et al (2019) suggested a new robust estimator with respect to non-normal
distribution. In this study they observed some situations in which modified maximum likelihood
estimation becomes in appropriate to develop the robust and efficient estimator of the
population mean. A robust shrinkage range estimation algorithm based on Hampel and
Skepped filter was presented by Chee-Hyun and Joon-Hyuk (2019). They demonstrated that the
estimation accuracy of the proposed method is higher than those of the existing median based
shrinkage methods through extensive simulation.

The commonly used estimators are: Stein Estimator by Stein (1956), Liu Estimator by Liu (1993)
and Ridge Estimator proposed by Hoerl and Kennard (1970) which are more efficient than OLS
when there is collinearity in two or more explanatory variables. Robust regression can be used
in any situation where least squares regression could be used. Frequently, data sets contains
outliers which are not errors of measurement but representative outliers, hence there is no
reason to exclude them from the analysis.

Therefore, in this study, the performance of least squares estimator and robust estimators (m-
estimator and mme-estimator) in nonlinear regression models under various contamination
schemes of error distribution were examined.

2. Methodology

The performance of the estimators was measured using Akaike information criterion (AIC),
Bayesian information criterion (BIC), and Mean Square error (MSE). The contaminations were
considered in the explanatory variables and different error distributions. The effect of sample
size was also examined for different levels of contaminations. Simulations were conducted
using R Statistical software by specifying the parameter values to the models under different
sample sizes and the estimators. The models to be used in simulating data are exponential and
polynomial functions given in equations (1) and (2).

2.1 Model Specification and Generation of Data for Simulations

The models considered for the simulation are:

Vi = Bo + exp[fix1; + Boxzi] + e, i=12..,n (1)
Vi =PBo+ Bixi +Px3+e, i=12..,n 2)
Where, y; is dependent variable, x; and x, are two independent variables, ﬁ]- ,j =0,1,2 are
parameters of the regression and e; is random error. Random values will be simulated for the
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two explanatory variables from Normal distribution. This will be followed by injecting outlier to
the explanatory variables. The error term will be generated differently from Normal,
Exponential, Cauchy, and Uniform distributions. The codes for each case of simulation;
parameter and sample sizes fixed for the simulation are discussed in subsequent sections.
For the simulation study, the parameters of nonlinear models are fixed as ,=1, ;=1 and f,=1.
The sample sizes used for the simulation of data are; 10, 20 and 40. At a particular choice of
sample size, the simulation study will be performed 1000 times for different forms of nonlinear
models in equations (1) and (2). The disturbances or error terms will be generated from normal
distribution with mean 0 and variance 1 and other non-normal distributions (exponential,
uniform and Cauchy distributions) as follows:

e;~N(0, 1), e;~exp(1),e;~U(0,1) and e;~cauch(0, 1)
The explanatory variables of equations (1) and (2) were generated with the injection of outliers
as follows;
X;=c(rnorm(n-1, 0,1),rnorm(1, 100,1))
X,=c(rnorm(n-1,0,1),rnorm(1,100,1))
X;=c(rnorm(n-2, 0,1),rnorm(2, 100,1))
X,=c(rnorm(n-2,0,1),rnorm(2,100,1))
X;=c(rnorm(n-3, 0,1),rnorm(3, 100,1))
X,=c(rnorm(n-3,0,1),rnorm(3,100,1))
This shows number of outliers introduced are 1, 2 and 3 from second form of normal
distribution in the explanatory variables. These form 10% of sample size of 10, 5% of sample
size of 20 and 3% of sample size of 40, when one outlier is introduced. 20% of sample size of 10,
10% of sample size of 20 and 5% of sample size of 40, when two outliers are introduced.30% of
sample size of 10, 15% of sample size of 20 and 8% of sample size of 40, when three outliers is
introduced. Note that each case of simulations will be performed 1000 times to form 1000
iterations.
2.3 OLS Estimator Procedure for Nonlinear Regression model parameter estimation Methods

For the purpose of this study, the nonlinear regression model considered is as follows:
Y; = f(BriXai + BaiXoi + - + BpiXpi) + €5, i=1..,n (3)
Y =(Y,...Y)
Xi =Xy Xp), 1=1,.,n

Y is the vector variable observed for i" measurement, f is a given nonlinear function (say,
polynomial or exponential) and (ey;,...,e,)" are the vector of random regression errors
(disturbances). The model (3) can be expressed as
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Y, = f(XiB) + ¢
(4)

The aim of the analysis is to estimate the regression parameters

Bi = (B, -, Bp)'. (5)

Nonlinear regression models have found numerous econometric applications e.g. in the analysis
of cross-section data or financial time series (Chang et al, 2002)

The most common estimator of parameters in the nonlinear model (1) is the nonlinear least
square (NLS) estimator. Utilizing the Ordinary Least Squares (OLS) method for the nonlinear
model (3), the estimator () is found by minimizing the sum of squared residuals:

minZ(ei)Z,where e, =y — P (6)
min )" (v; = FX()Y @

This gives the OLS estimator for (f) as:

Bows = X' X)IX'Y 8)

Overall possible values

~

:Bi = (:811 ...,ﬁp)’E R (9)

The OLS estimate is expected to be optimal when the error distribution is assumed to be
normally distributed with mean zero and positive variance. Using the OLS estimator should be
accompanied by verifying its assumptions and its diagnostic tools are well known. Nevertheless,
the estimator suffers from a high vulnerability with respect to the presence of outliers in the
data. While various robust estimators are available for the linear regression model, most of
them do not allow to be extended to the nonlinear model. The principle of Nonlinear Robust M
(NRM) and Nonlinear Robust S (NRS) estimators will be investigated in relation with Nonlinear
Least Square estimators under different conditions.
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24 M-Estimation

Linear least-squares estimates can behave badly when the error distribution is not normal,
particularly when the errors are heavy-tailed. One remedy is to remove influential observations
from the least-squares fit. Another approach, termed robust regression, is to use a fitting
criterion that is not as vulnerable as least squares to unusual data. The most common general
method of robust regression is M-estimation, introduced by Huber (1973). This class of
estimators can be regarded as a generalization of maximum-likelihood estimation, hence the
term “M-estimation”.

Let’s recall and consider the nonlinear model (3)
Y; = f(BriXai + BaiXai + -+ BpiXpi) + €, i=1,..,n

and the residuals are given by e; = y; — 9;
With M-estimation, the estimates B are determined by minimizing a particular objective
function over all B,
Yisip(e) = Xt p(yi —xip) €R
(10)
Where the function p gives the contribution of each residual to the objective function. A
reasonable p should have the following properties:
i always nonnegative, p(e;) 20
ii. equal to zero when its argument is zero, p(0) =0
iii. symmetric, p(e;) = p(-¢;)
iv. monotone in |e;|, p(e;) = p(e;’) for |e;| > |e;’|
For example, the least-squares p-function p(e;) = eiz satisfies these requirements, as do
many other functions. Let ¢ = be p’ the derivative of p. U is called the influence curve.
Differentiating the objective function with respect to the coefficients B and setting the
partial derivatives to 0, produces a system of k + 1 estimating equations for the coefficients:

D Wi - xif)xi = 0 (an
i=1

Define the weight function w (e) = { (e)/e, and let w; = w(e)).
Computing the estimating equations may be written as

n

> wii— ) =0 (12)
i=1

Solving these estimating equations is equivalent to a weighted least-squares problem,
minimizing

Jjournals@arcnjournals.org 6|Page



International Journal of Pure & Applied Science Research

n

Z w? =0 (13)
i=1
The weights, however, depend upon the residuals, the residuals depend upon the estimated
coefficients, and the estimated coefficients depend upon the weights. An iterative solution
(called iteratively reweighted least-squares, IRLS) is therefore required:

i.  Select initial estimates B(O), such as the least-squares estimates.

ii. At each iteration t, calculate residuals ef~*and associated weights w/ ™! = w[ef~']from

the previous iteration.
iii.  Solve for new weighted-least-squares estimates

BO = [x'wEDX] x'w Dy (14)
Where X is the model matrix, with x/as its ith row, and W(®D = diagn[W D] is the
current weight matrix.

Steps 2 and 3 are repeated until the estimated coefficients converge. The asymptotic
covariance matrix of B is

E 2
BB v(p) = [E((wL,))]Z(X'X)"1 (15)
Using X1-;[W(e;))]? to estimate E(y?), and [Z?ﬂ@r to estimate [E(y’)]* produces the

estimated asymptotic covariance matrix, ¥(f) (which is not reliable in small sample).
25 MM Estimators

MM estimators (Yohai, 1987) reach a high level of robustness as well as high (tunable)
efficiency, by combining the properties of M estimators and S estimators. Let EE be an S
estimator, and let 6 be the corresponding M estimator of scale, solving for § = EE. The MM
estimator is then defined as local solution of

Bum = mﬂini p <r;7ﬂ) (16)

Obtained with IRWLS and initial value B, . An implementation of MM estimators is available in
the package MASS (function rim).

MM-estimation attempts to retain the robustness and resistance of S-estimation, while gaining
the efficiency of M-estimation. The method proceeds by finding a highly robust and resistant S-
estimate that minimizes an M-estimate of the scale of the residuals (the first M in the method's
name). The estimated scale is then held constant whilst a close by M-estimate of the
parameters is located (the second M).
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Data Analysis and Results

Table 1: Performance of Estimators when Error Distribution is Normal

Sample | Model Exponential Polynomial
Size Estimator MSE AlC BIC MSE AIC BIC
OLS 0.8865 46.49962 | 47.7099 | 1.051 43.69414 | 44.90448
10 6
Robust M 0.6269 47.53322 | 48.7435 | 1.092 44.02461 | 45.23495
6
Robust MM | 0.5553 50.44593 | 51.6562 | 1.236 46.31082 | 47.52117
7
oLs 1.531 98.00129 | 101.984 | 2.036 88.33785 | 92.32078
20 2
Robust M 0.9252 100.8508 | 104.833 | 2.705 89.10289 | 93.08582
7
Robust MM | 0.9159 104.6038 | 108.586 | 1.723 91.79753 | 95.78046
7
oLs 1.489 208.7867 | 215.542 | 1.517 177.6032 | 184.3588
40 3
Robust M 1.038 214.8528 | 221.608 | 1.186 178.8611 | 185.6167
3
Robust MM | 1.127 220.6504 | 227.405 | 1.108 181.6315 | 188.387
9

Table 1 above shows the relative performance of the three estimators under different criteria
of selection at different sample size when the error term is generated from normal distribution.
From the table, it is observed that OLS is the best at different sample sizes especially on the
basis of AIC and BIC criteria for both exponential and polynomial models. This is followed by
Robust M as the second best in terms of all criteria.
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Table 2: Performance of Estimators when Error Distribution is Exponential

Sample | Model Exponential Polynomial
Size Estimator MSE AlC BIC MSE AIC BIC
oLs 0.5313 | 40.2890 | 41.49938 | 1.616 40.1761 | 41.3864
10 4 3 7
Robust M 0.274 | 40.0101 | 40.22044 |2.024 40.5937 | 41.8040
2 6
Robust MM | 0.2825 | 48.3013 | 49.51169 | 0.7581 | 34.6789 | 35.8892
5 2 6
oLs 1.743 | 91.7620 | 95.74499 1.226 82.5889 | 86.5719
20 6 7
Robust M 0.274 |86.1931 |90.176 0.916 80.7644 | 80.7473
4 7
Robust MM | 0.3063 | 104.958 | 108.9415 | 0.3766 | 80.1930 | 80.1759
6 3 6
oLs 0.147 | 201.087 | 207.8426 | 1.559 166.806 | 173.562
40 1 6 1
Robust M 1.441 | 209.955 | 216.7108 1.777 168.725 | 175.480
2 3 9
Robust MM | 0.734 | 221.107 | 200.8633 1.11 164.475 | 161.230
8 1 6

The table 2 shows that Robust M has the lowest values of MSE, AIC and BIC for exponential
model at sample sizes of 10 and 20 while robust MM has the lowest values in the three criteria
from polynomial model at the same sample sizes and therefore they can be classified as the
best respectively. However at the largest sample size of 40, The OLS seems to be the best

estimator based all the criteria for both model
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Table 3: Performance of Estimators when Error Distribution is Uniform

Sample | Model Exponential Polynomial
Size Estimator MSE AlC BIC MSE AIC BIC
oLs 0.4629 | 49.7533 | 49.96368 | 0.4204 | 46.1787 | 47.3891
10 3 9 3
Robust M 0.4024 | 42.2499 | 43.46025 | 0.2533 |40.5720 | 41.7824
1 6
Robust MM | 0.4395 | 47.0481 | 48.25844 | 0.3082 | 44.5313 | 45.7416
1 5
oLs 2.538 | 89.5780 | 96.56098 |3.1175 | 89.7771 | 96.6598
20 5
Robust M 0.341 | 83.7255 | 87.70844 | 2.341 83.7255 | 87.7084
2 4
Robust MM | 1.267 | 88.3430 | 92.326 1.267 88.3430 | 92.326
7 7
oLs 4.895 |200.012 | 206.7678 1.478 167.207 | 173.963
40 3 8 3
Robust M 0.743 | 208.418 | 215.1741 1.078 169.019 | 175.775
5 6 1
Robust MM | 0.4071 | 218.286 | 225.0418 | 0.8408 | 175.734 | 182.49
3 5

The average values of MSE, AIC and BIC recorded in table 3 revealed that Robust M was the
best estimators because it has the minimum values of the three criteria used for the
assessment followed by Robust MM while OLS has the least performance among the three at
sample size of 10 and 20. However the OLS supersedes their performances as the sample size

increases to 40
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Table 4: Performance of Estimators when Error Distribution is Cauchy

Sample | Model Exponential Polynomial
Size Estimator MSE AlC BIC MSE AIC BIC
oLs 0.9980 | 71.8571 | 78.06748 | 1.8928 | 69.3786 | 69.5889
10 4 4
Robust M 0.9526 | 67.9747 | 69.18509 1.157 66.2970 | 67.5073
5 4 8
Robust MM | 0.7945 | 69.8290 | 71.03935 | 0.8907 | 67.8741 | 69.0844
1 4 8
oLs 6.265 | 149.318 | 154.3018 |4.776 149.241 | 151.224
20 9 6 6
Robust M 3.349 | 145.479 | 149.4626 |2.91 140.763 | 144.746
7 8 7
Robust MM | 3.445 | 147.295 | 151.2786 | 3.417 141.886 | 145.869
6 3 2
oLs 4.783 | 317.764 | 328.5203 1.977 305.859 |319.614
40 8 5
Robust M 1.461 |314.970 | 321.7257 1.539 304.786 | 311.541
2 1 6
Robust MM | 1.544 | 313.665 | 320.4209 1.013 303.439 | 310.194
4 3 8

The average values of MSE, AIC and BIC recorded in table 4. From the graphs, Robust M was the
best estimators followed by Robust MM while OLS has the least performance among the three
at sample size of 10 and 20. The robust MM is the best at sample size of 40 which is also
followed by robust M. The gap between their performances increases relatively most especially
as sample size increases.
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Table 5: Performance of Estimators on One Outlier in the Explanatory Variables

% of | Model Exponential Polynomial
N Outliers Estimator MSE AIC BIC MSE AIC BIC
OLS 2.527 e+84 | 4933.26 |4934.47 | 32.60 |230.314 | 231.5244
10 10% 4 5 1
Robust M 1.239e+84 | 3933.47 |3934.68 |1.350 |130.519 | 131.7301
8
Robust MM | 1.26 e+84 | 4014.38 | 4015.59 | 1.546 |211.434 | 212.6447
2 3 4
OLS 9.954e+84 | 8862.42 | 8866.40 |97.38 | 267.988 | 271.9718
20 5% 1 4 9
Robust M 8.787e+84 | 7862.58 | 7866.56 | 86.67 | 258.153 | 262.136
6 9
Robust MM | 1.042+84 8005.41 | 8009.40 | 86.84 | 400.983 | 404.9668
9 2 6 9
OLS 3.776e+84 | 15719.9 | 15726.7 | 95.83 | 513.366 |520.1215
40 3% 6 2
Robust M 4.333e+84 | 15720.0 | 15726.8 | 109.9 | 513.490 | 520.2457
8 4 2
Robust MM | 5.127+84 15973.7 | 15980.4 |1.108 | 766.222 | 772.9778
3 9 3

Table 5 shows the results of the three estimators on the two forms of nonlinear regression
when only one outlier is introduced to the explanatory variables and error distribution is
normal. From the table, Robust M is the best estimators to estimate both exponential and
polynomial form of the models followed by Robust MM while OLS has the least performance at
the sample size of 10 and 20 where the outlier form 10 and 5% of the sample size respectively.
However as sample size increases to 40 and outlier forms just 3%, the OLS supersedes the two
robust estimators in performance
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Table 6: Performance of Estimators on two Outliers in the Explanatory Variables

% of | Model Exponential Polynomial

n Outliers | Estimator MSE AIC BIC MSE AIC BIC
OLS 1.184e+86 | 4070.53 | 4081.74 | 130.00 | 230.402 | 231.6123

10 | 20% Robust M 4.728e+83 | 4011.774 | 4012.984 | 58.61 | 130.5864 | 131.7967
Robust MM | 1.722+84 | 4032.255 | 4033.466 | 61.888 | 218.37 219.5803
OLS 1.438e+86 | 8060.475 | 8064.458 | 97.29 | 358.0574 | 362.0403

20 | 10% Robust M 9.363e+84 | 8005.739 | 8009.721 | 86.25 | 258.2226 | 262.2055
Robust MM | 1.042+86 | 8042.066 | 8046.049 | 91.846 | 314.8779 | 318.8609
OLS 6.005e+85 | 16973.56 | 16980.31 | 194.39 | 813.5445 | 820.3

40 | 5% Robust M 1.991e+84 | 15996.58 | 16003.34 | 102.6 | 513.6858 | 520.4413
Robust MM | 1.192+84 | 16043.36 | 16050.11 | 111.17 | 793.9592 | 800.7148

Table 6 shows the results of the two sestimators on the two forms of nonlinear regression
when two outliers is introduced to the explanatory variables and error distribution is normal.
From the table, Robust M is the best estimators to estimate both exponential and polynomial
form of the models followed by Robust MM while OLS has the least performance at all sample

sizes
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Table 7: Performance of Estimators on Three Outliers in the Explanatory Variables

% of | Model Exponential Polynomial
n | Outliers | Estimator MSE AIC BIC MSE AIC BIC

OoLS 2.088e+8 | 4077.02 | 4078.23 | 117.6 230.390 | 231.600

10 | 30% 6 6 6 5 8
Robust M 1.308e+8 | 4030.19 |4031.40 |77.39 130.656 | 131.866

4 6 6 2 6
Robust MM | 3.254+84 | 4041.01 | 4042.22 | 83.573 | 222.415 | 223.625

1 2 4 7
OLS 2.942e+8 | 8071.90 |8075.88 | 119.51 | 458.039 | 462.022

20 | 10% 6 4 7 7 7
Robust M 6.689e+8 | 8037.14 |8041.12 | 115.1 258.236 | 262.219

4 5 8 9 8
Robust MM | 7.042+84 | 8058.59 | 8062.57 | 117.84 |422.979 | 426.962

3 6 1

OLS 6.051e+8 | 16099.3 | 16096.1 | 194.11 | 813.675 | 820.431

40 | 8% 5 6 2 5 1
Robust M 3.447e+8 | 16038.4 |16045.1 | 101.7 513.842 | 520.597

4 2 7 2 7
Robust MM | 4.192+84 | 16079.7 | 16086.4 | 1.17 810.183 | 816.938

6 2 7

It was observed from the table 7, when three outliers are introduced into the explanatory
variables of the two nonlinear functions and the error distribution is normal, that Robust M is
the best estimator for both models at all sample sizes and outlier proportions. This is followed
by Robust MM and the least performing estimator is OLS
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Table 8: Performance of Estimators on One Outlier in the Explanatory Variables with
Exponential Error Distribution
% of | Model Exponential Polynomial

n Outliers | Estimator MSE AlC BIC MSE AlC BIC
OLS 5.343e+84 | 3934.626 | 3936.836 | 110.9 132.4273 | 132.6376

10 | 10% Robust M 5.566e+84 | 3932.842 | 3934.053 | 105.2 130.6431 | 131.8535
Robust MM 1.6641+84 | 3013.62 | 3014.831 | 101.342 | 111.4204 | 112.6307
OoLS 5.683e+84 | 7864.55 | 7866.532 | 113.3 259.3344 | 264.3173

20 | 5% Robust M 4.033e+84 | 7861.71 | 7865.693 | 80.61 258.4946 | 262.4775
Robust MM 1.3835+84 | 7004.194 | 7008.177 | 80.4869 | 200.9711 | 204.9541
oLS 3.455e+84 | 15727.48 | 15733.24 | 153.5 515.3371 | 522.0926

40 | 3% Robust M 2.175e+84 | 15725.62 | 15732.37 | 126.2 513.4701 | 520.2257
Robust MM 1.7349+84 | 15080.64 | 15087.4 | 111.18 | 766.2885 | 773.044

Table 8 presents the results of the estimators when one outlier is introduced to both
exponential and polynomial models at different sample sizes, where error term is exponential.
The best estimator is observed at the lowest sample sizes for all estimators. While Robust MM
is the best performing estimator at different proportions of outliers and levels of sample size,
the OLS is the least

Table 4.9: Performance of Estimators on two Outliers in the Explanatory Variables with
Exponential Error Distribution

% of | Model Exponential Polynomial

n | Outliers | Estimator MSE AIC BIC MSE AIC BIC
OLS 8.044e+85 | 4008.049 | 4009.259 | 106.8 | 130.3027 | 131.5131

10 | 20% Robust M 6.832e+84 | 4003.242 | 4003.452 | 69.33 | 120.5003 | 121.7107
Robust MM | 1.105+84 | 4001.058 | 4001.268 | 62.176 | 118.3473 | 119.5576
OoLS 4.159e+85 | 8009.059 | 8009.042 | 112.3 | 258.3037 | 262.2866

20 | 10% Robust M 3.711e+84 | 8004.395 | 8008.378 | 71.12 | 228.4714 | 232.4543
Robust MM | 1.4766+84 | 8002.61 | 8003.593 | 61.486 | 214.8473 | 218.8303
OoLS 1.663e+85 | 15962.56 | 15969.31 | 153 513.2792 | 520.0347

40 | 5% Robust M 3.2e+84 15985.69 | 15992.45 | 186.6 | 513.4252 | 510.1807
Robust MM | 2.7984+84 | 16045.49 | 16052.24 | 1.281 | 793.9951 | 500.7506

Table 9 presents the results of the estimators when two outliers are introduced to both
exponential and polynomial models at different sample sizes, where error term is exponential.
The best estimator is observed at the lowest sample sizes for all estimators. While Robust MM
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is the best performing estimator at different proportions of outliers and levels of sample size
the OLS is the least

Table 10: Performance of Estimators on Three Outliers in the Explanatory Variables with
Exponential Error Distribution

% of | Model Exponential Polynomial

n | Outliers | Estimator MSE AIC BIC MSE AIC BIC
OLS le+86 4045.599 | 4046.809 | 109.4 | 135.2653 | 135.4756

10 | 30% Robust M 2.056e+84 | 4028.714 | 4029.924 | 86.51 | 130.5021 | 131.7125
Robust MM | 2.078+84 | 4039.603 | 4040.813 | 5.046 | 222.4064 | 223.6168
OoLS 1.548e+86 | 8061.515 | 8065.498 | 113 458.4382 | 462.4211

20 | 10% Robust M 5.833e+84 | 8036.779 | 8040.761 | 71.97 | 258.6482 | 262.6311
Robust MM | 5.883+84 | 8057.478 | 8061.461 | 76.74 | 422.9579 | 426.9408
OLS 2.694e+86 | 16088.01 | 16084.76 | 154.4 | 813.2973 | 820.0528

40 | 8% Robust M 4.479e+84 | 16037.46 | 16044.22 | 186.8 | 513.4612 | 520.2167
Robust MM | 8.713+84 | 16079.83 | 16086.59 | 111.28 | 810.2022 | 816.9577

From table 4.10, Robust M has minimum values of MSE, AIC and BIC and it is therefore the best
among other estimators at different sample sizes and percentages of outlier. All estimators are
observed to be the best at lower sample sizes. The least performing estimator from both
models with three outliers on their explanatory variables is OLS due to its highest value of the

three criteria

Journals@arcnjournals.org

16 |Page




International Journal of Pure & Applied Science Research

Table 11: Performance of Estimators on One Outlier in the Explanatory Variables with
Uniform Error Distribution

% of | Model Exponential Polynomial
n | Outliers | Estimator MSE AIC BIC MSE AlC BIC
OLS 2.818e+84 | 3932.771 | 3933.981 | 60.33 130.2461 | 131.4565
10 | 10% Robust M 1.346e+84 | 3732.97 | 3734.181 | 28.61 120.4458 | 121.6562
Robust 6.466+82 | 3013.951 | 3015.161 | 20.3083 | 111.4233 | 112.6336
MM
OLS 1.189e+84 | 7863.742 | 7867.725 | 166.8 258.1085 | 262.0914
20 | 5% Robust M 8.567e+83 | 7463.9 7467.883 | 123.2 238.2676 | 242.2505
Robust 5.561+82 | 7006.628 | 7010.61 | 111.521 | 200.9879 | 204.9708
MM
OLS 3.797e+84 | 15723.02 | 15729.77 | 139.8 513.155 | 519.9105
40 | 3% Robust M 2.957e+84 | 15223.16 | 15229.91 | 107.8 512.2932 | 513.0487
Robust 4.071+82 | 15071.81 | 15078.56 | 100.942 | 506.2066 | 507.9621
MM

The average values of MSE, AIC and BIC recorded in table 11 revealed that Robust MM was the
best estimators because it has the minimum values of the three criteria used for the
assessment followed by Robust M while OLS has the least performance among the three at
sample size different sample sizes and percentages of outlier.

Table 12: Performance of Estimators on two Outliers in the Explanatory Variables with
Uniform Error Distribution

% of | Model Exponential Polynomial

n | Outliers | Estimator MSE AIC BIC MSE AIC BIC
OLS 1.552e+86 | 4010.706 | 4011.916 | 53.39 | 131.3336 | 132.5439

10 | 20% Robust M 1.092e+84 | 4001.935 | 4010.145 | 34.5 130.0132 | 131.7236
Robust MM | 8.253+84 | 4001.416 | 4002.626 | 0.3083 | 118.3526 | 119.563
OLS 1.597e+86 | 8000.583 | 8004.566 | 172.3 | 258.0792 | 262.0622

20 | 10% Robust M 2.363e+84 | 8005.886 | 8003.869 | 143 238.2402 | 252.2231
Robust MM | 7.052+84 | 8002.47 | 8002.453 | 2.017 | 214.8651 | 118.8481
OLS 9.286e+84 | 15965.21 | 15971.96 | 139.4 | 513.1691 | 519.9246

40 | 5% Robust M 3.063e+84 | 15088.06 | 15964.82 | 107 512.3198 | 519.0753
Robust MM | 4.071+84 | 15042.6 | 15049.36 | 0.8958 | 503.9625 | 500.718
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The average values of MSE, AIC and BIC recorded in table 12 revealed that Robust MM was the
best estimators because it has the minimum values of the three criteria used for the
assessment followed by Robust M while OLS has the least performance among the three at
sample size different sample sizes and percentages of outlier.

Table 13: Performance of Estimators on Three Outliers in the Explanatory Variables with

Uniform Error Distribution

% of | Model Exponential Polynomial
n | Outliers | Estimator MSE AIC BIC MSE AIC BIC
OLS 1.583e+86 | 4067.088 | 4068.298 | 52.97 230.4995 | 231.7098
10 | 30% Robust M 1.605e+84 | 4030.235 | 4031.446 | 38.24 130.7385 | 131.9489
Robust 1.656+84 | 4040.838 | 4042.049 | 41.33 222.4104 | 223.6207
MM
OLS 6.074e+86 | 8061.95 | 8065.933 | 175.4 358.0405 | 362.0235
20 | 10% Robust M 7.342e+84 | 8037.229 | 8041.212 | 134.5 258.2377 | 262.2206
Robust 7.052+84 | 8059.204 | 8063.187 | 142.017 | 262.9705 | 266.9535
MM
OoLS 9.495e+84 | 16068.69 | 16065.44 | 139.2 813.2029 | 819.9584
40 | 8% Robust M 3.44e+84 | 16038.12 | 16044.87 | 109.3 513.3757 | 520.1312
Robust 4.392+84 | 16077.81 | 16084.57 | 0.9473 | 810.1729 | 816.9284
MM

From table 13, Robust M has minimum values of MSE, AIC and BIC and it is therefore the best
among other estimators at different sample sizes and percentages of outlier followed by robust
MM. All estimators are observed to be the best at lower sample sizes. The least performing
estimator from both models with three outliers on their explanatory variables is OLS due to its
highest value of the three criteria
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Table 14: Performance of Estimators on One Outlier in the Explanatory Variables with Cauchy
Error Distribution

% of | Model Exponential Polynomial

n | Outliers | Estimator MSE AIC BIC MSE AIC BIC
OLS 2.818e+84 | 4032.771 | 4033.981 | 60.62 | 230.5884 | 231.7987

10 | 10% Robust M 1.346e+84 | 3932.97 | 3934.181 | 30.54 | 130.8046 | 132.015
Robust MM | 1.167e+84 | 4013.951 | 4015.161 | 31.142 | 211.4276 | 212.6379
OoLS 1.189e+84 | 8063.74 | 8067.725 | 167.1 | 269.0667 | 273.0496

20 | 5% Robust M 8.567e+83 | 7863.9 7867.883 | 127 259.2553 | 263.2382
Robust MM | 1.173e+84 | 8006.628 | 8010.61 | 3.889 | 260.9879 | 264.9708
OLS 3.797e+84 | 15723.02 | 15729.77 | 139.3 | 516.2296 | 522.9851

40 | 3% Robust M 2.957e+84 | 15723.16 | 15729.91 | 106.9 | 516.4058 | 523.1614
Robust MM | 3.561+84 | 15971.81 | 15978.56 | 2.168 | 766.2833 | 773.0389

The average values of MSE, AIC and BIC presented in table 14, shows that the robust M is the
best estimator at sample sizes of 10 and 20 with 10% and 20% respectively due to its minimum
values of the criteria, this is followed by Robust MM. However, as sample size is getting larger
(when sample size is 40), OLS seems to have the minimum values of AIC and BIC and can be
categorized as the best in that category due to very low percentage of outliers over the sample
size. M estimator has the second performance while MM estimator is the least in that category

Table 15: Performance of Estimators on two Outliers in the Explanatory Variables with

Cauchy Error Distribution

% of | Model Exponential Polynomial
n | Outliers | Estimator MSE AIC BIC MSE AIC BIC
OLS 1.552e+86 | 4040.706 | 4041.916 | 53.75 230.6576 | 231.8679
10 | 20% Robust M 1.092e+84 | 4011.935 | 4013.145 | 34.39 130.8485 | 132.0589
Robust 1.67 e+84 | 4031.416 | 4032.626 | 41.967 | 218.2964 | 219.5068
MM
OoLS 1.597e+86 | 8050.583 | 8054.566 | 172.8 269.0023 | 272.9853
20 | 10% Robust M | 2.363e+84 | 8005.886 | 8009.869 | 142.6 259.1937 | 263.1766
Robust 4.604e+84 | 8042.47 | 8046.453 | 154.624 | 264.8608 | 268.8437
MM
OLS 9.286e+84 | 16165.21 | 16171.96 | 139 516.682 | 523.235
40 | 5% Robust M | 3.063e+84 | 15988.06 | 15994.82 | 106 516.4619 | 523.2175
Robust 1.681e+84 | 16042.6 | 16049.36 | 124.82 | 516.4986 | 523.229
MM
Jjournals@arcnjournals.org 19| Page




International Journal of Pure & Applied Science Research

The average values of MSE, AIC and BIC recorded in table 15 revealed that Robust MM was the
best estimators because it has the minimum values of the three criteria used for the
assessment followed by Robust M while OLS has the least performance among the three at
sample size different sample sizes and percentages of outlier. However the three estimators
have close criteria values at the largest sample size in polynomial model and they all perform
better at lower sample size compare with other sample sizes.

Table 16: Performance of Estimators on Three Outliers in the Explanatory Variables with
Cauchy Error Distribution

% of | Model Exponential Polynomial

n Outliers Estimator MSE AIC BIC MSE AIC BIC
oLS 1.583e+86 | 4037.088 | 4038.298 | 53.3 131.851 | 132.9613

10 | 30% Robust M 1.695e+84 | 4030.235 | 4031.446 | 38.14 131.1055 | 132.3158
Robust MM 1.012e+84 | 4020.838 | 4022.049 | 31.508 | 129.9711 | 131.1815
oLsS 6.074e+86 | 8038.95 | 8045.933 | 175.7 259.9977 | 263.9807

20 | 10% Robust M 7.342e+84 | 8037.229 | 8041.212 | 137.1 259.2244 | 263.2074
Robust MM 5.337e+84 | 8029.204 | 8033.187 | 135.685 | 242.9638 | 246.9467
oLS 9.495e+84 | 16038.69 | 16045.94 | 138.8 516.5891 | 523.1446

40 | 8% Robust M 3.44e+84 | 16038.12 | 16044.87 | 108.4 516.5176 | 523.2731
Robust MM 1.865e+84 | 16037.81 | 16044.57 | 102.48 | 516.1949 | 523.0005

It was observed from table 16 that Robust MM is the best estimator over the sample sizes and
percentages of outlier based on all criteria for both exponential and polynomial models.
However, the three estimators have closed AIC and BIC values in polynomial models.

4 Conclusions

This study has revealed that the OLS was the best when there is no outlier in the explanatory
variables and the error distribution is normal. However, robust M is the best in exponential,
uniform and Cauchy error distributions without outlier in the explanatory variables at lower and
moderate sample sizes while OLS and Robust MM are the best respectively at larger sample size.
Robust M is the best estimator when there are outliers in the explanatory variables the and error
distribution is normal while MM is the most robust estimator when there is outliers and error
distributions are no normal from both exponential and polynomial models. Meanwhile, OLS still
maintain a good estimator when there is little percentage of outliers in the explanatory variables of
the nonlinear model while error distribution is normal.
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