International Journal of Information, Engineering & Technology

Volume 11, Issue 4, PP 19-25, ISSN: 2360-9194, January, 2021
Double Blind Peer Reviewed International Research Journal
garcjournalssubmit@gmail.com

Journal Series: Global Academic Research Consortium (garc)

Parallel Programming Models: An Overview of Hybrid
and Heterogeneous Models

Ahmed Ali Umar?; Engr. Mallam Terab Ali2; Muhammad H. Abdulfattahs3;
Falmata Bukar Wakil4

1Department of Computer Engineering, University of Maiduguri, Borno State

2&4Department of Computer Engineering Technology Ramat Polytechnic Maiduguri P.M.B.
1070 Borno State.

3Computer and ICT Centre, University of Maiduguri. mhabdulfattah@unimaid.edu.ng

Correspondence Author: Email emfance@gmail.com

Abstract: The increasing relevance of parallelism in the computational field can be illustrated by
considering its effect on the computing literature over the last decade. Since the switch of the
microprocessor industry to the multi-core model, and the introduction of GPGPU, parallelism has
become a key player in the software arena. Thus, the hybrid parallel programming approach is
becoming increasingly popular. The platform model is viewed from a hierarchical and abstract
perspective. Execution of an OpenCL program involves simultaneous execution of multiple instances
of a kernel on one or more OpenCL devices. In addition, the easy availability of GPUs on multi-core
systems is providing momentum to a new parallel programming model: heterogeneous
programming. This supersedes pure GPU programming, allowing several multi-core CPUs and
several GPUs to collaborate.

Key words: Charcoal Dust, Green moulding sand, metal casting.

1.0 Introduction

The impressive rate of improvement and enhancement in technology has led to the
dominance of microprocessor based computers in the computing arena. Microprocessors
with single processing unit (CPU) led to a sustained performance increase and cost
reduction in computer applications for more than two decades. However, this growth
became stagnant around 2003 due to power constraints [1]. These shortfalls made it
difficult to increase the clock frequencies and the number of tasks performed within each
clock period. Additionally the number of data for processing continues to grow.

garcjournalssubmit@gmail.com 19

mailto:garcjournalssubmit@gmail.com
mailto:mhabdulfattah@unimaid.edu
mailto:emfance@gmail.com
mailto:garcjournalssubmit@gmail.com
mailto:garcjournalssubmit@gmail.com
mailto:mhabdulfattah@unimaid.edu
mailto:emfance@gmail.com
mailto:garcjournalssubmit@gmail.com
mailto:garcjournalssubmit@gmail.com
mailto:mhabdulfattah@unimaid.edu
mailto:emfance@gmail.com
mailto:garcjournalssubmit@gmail.com

International Journal of Information, Engineering & Technology

To remedy these limitations processor developers adopted a model where the
processor has multiple processing units known as cores [3]. Today there are processors
with dozens of cores available in the market and with the rapid growth of semiconductor
technology it will be very common to have number of cores on processors going into
hundreds and even thousands in the near future. This kind of processor is referred to as
many core processors. However, to tap all the reward offered by these processors will not
be an easy task, and one of the major challenges will be how to efficiently utilize the
available computing power [4]. Obviously this gradual shift in computing will have a huge
impact on software and its development. Almost all software applications are developed to
execute in sequential order which is implemented on conventional single core processors.
As such the era of sequential programming is gradually coming to an end [5], [6]. Hence, we
can no longer rely on single core processors for improvement in performance but it can be
achieved through multiple and many core processors by using parallel programming which
has now taken a new star role on the stage [4].

Parallel computing can significantly increase the performance of applications by
executing them on multiple processors. Unfortunately, the scaling of application
performance is not equal to the scaling of peak speed, and the programming burden is still
important. There is need for the applications to automatically scale to the number of
processors. However, for this to come about the applications must be programmed to
exploit parallelism. Thus, achieving scalable parallelism largely depends on the
applications developer [7].

A parallel programming model is a construct that enables the expression of parallel
programs which can be compiled and executed. The advantages of a programming model
are usually judged on its generality: how well a range of different problems can be
expressed and how well they execute on a range of different architectures. Therefore, the
implementation of a programming model can take several forms such as libraries, language
extensions, or invent new programming model. A good programming model can provide an
essential bridge between hardware and software, which means that high-level languages
can be efficiently compiled and executed on specific hardware [8].

The
(GPGPUs)

many-core

11881818
[5]5151a]5]5]515)
2888401 81
[515151a15]5]515]
A1 80618
28819188
A11681118
a888a0a1 1
A888H1 88
a888aaaa8
A1881118
81 61681 84
[5151515]1515]515)
A11681188
7119840188
A81 681 881
g11149a18
A11868181
g1189a9181
A1191118
816818611
A11481118
Ad4@E4414

GPUs.

11111118
AA1A1118
Haa8ARaaa
HEaA1 BAA1
AaaBAAR111
HaaRRAAL
A11818681
#8181 888
A1888611
aa8A1111
Hii11@181
@11 886881
Ha8A1a11
A11 886681
HaBRRAAL
A181H8118
H118888a.1
#A11118688
Ha08ARaAL
Hi118168
@11 8868081
H1i188181
A4 44 @ @

181118918
ABBRAAA
2881 9888
a8881a18
ARBBBEAA
[5]5151a]5]5 515]
A11168188
a81891881
A1181111
g1881188
A1181181
811860814
H1184188
A1111881
[5]5151a]5]5]515]
A88BHAA1
a1114a9a88
A1116A188
a88a0aa8
H1181881
811681181
H88800a8 1
Ad44 @604 0@

18111118
a881 /81681
20881818
5]515151815]5]5]
000818611
Ha8aAR118
AA111118
H1818118
118681688
H1181801
H1i188818
61181188
H11818681
A1i8i8Ai111
HaaAR1 ga
5]GI5]oln]s]s 5]
H1818188
A18811688
2081 1aaa
H1i181118
6118681681
5]51515]18]15]5]5]
A1 1 AE@d 4

a888aaaa8
AABA1 818
288804988
288801 88
ABBA111
#8111188
A888HAaAa1
28880881
A11868181
g11891118
H1184d181
8116868181
H11148611
A1181111
#8181 988
ABBA1118
g11891111
Al1i181881
g1189a9a11
H1114A181
8168681184
Ha88014a18
A4 4 @@ @4

Fig. 1 Shows Programming Codes
availability of General Purpose computation on graphical processing units
in actual multi-core systems has lead to the Heterogeneous Parallel
Programming (HPP) model. HPP Seeks to harness the capabilities of multi-core CPUs and

According to all these hybrid architectures,

garcjournalssubmit@gmail.com

aaaaRaaa
5]5]5]alals]s 5]
a88881 98
HAARRAAA
aaAABaaA
H1181801
aa8/ABAaaA
Ha8aRAaaA
aa8AAaa1
Ag1188181
Hil1188168
280888681
H111 8806
AiiiB8a1a8
H1881801
AiiiBAiil
Hg18811168
AiiAi1i1168
Ag1181111
Hi188161
611818681
Hi818811
A AAEd 4 0@

different parallel

20

mailto:garcjournalssubmit@gmail.com
mailto:garcjournalssubmit@gmail.com
mailto:garcjournalssubmit@gmail.com

International Journal of Information, Engineering & Technology

programming models can be mixed in what is called hybrid parallel programming. A well
planned implementation of hybrid parallel programs can generate massive speedups in the
otherwise pure homogeneous implementations [9]. The same can be applied to hybrid
programming involving GPUs and distributed architectures [10], [11].

In this paper, parallel programming models are reviewed with special consideration
to heterogeneous and hybrid programming models in relation to their suitability for High
Performance Computing applications.

2.0 Heterogeneous Parallel Programming Models

In early 2001 NVIDIA released the first programmable GPU: GeForce3. In 2003 the
Siggraph/ Eurographics Graphics Hardware workshop, held in San Diego, showed a change
from graphics to non-graphics applications of the GPUs [12]. Hence, the concept of general
purpose graphical processing unit was born. Nowadays, one or multiple host CPUs and one
or more GPUs can be found in a single system. Thus, the name heterogeneous system and
the emergence of a programming model oriented toward these systems.

Heterogeneous model is predicted to become a main approach due to the
microprocessors industry interest in the development of Accelerated Processing Units
(APUs). An APU combines the CPU (multi-core) and a GPU on the same die. In the first
CPU+GPU systems, languages as Brook [13] or Cg [14] were used. However, NVIDIA has
popularized (Compute Unified Device Architecture) CUDA [2] as the principal model and
language to program their GPUs. More recently, the industry has worked together on the
Open Computing Language (OpenCL) standard [17] as a common model for heterogeneous
programming. In addition, different proprietary solutions, such as Microsoft’s
DirectCompute or Intel’s Array Building Blocks (ArBB) [15], are available. Here these
approaches are reviewed.

OpenCL is an open source program for general purpose parallel programming
developed for CPUs, GPUs and other processors. It was first released in late 2008 by
Khronos Group. Basically it separates between the devices and the host. The rationale
behind OpenCL is to write functions that execute on OpenCL devices and APIs for creating
and managing these kernels. The kernels are compiled for the targeted device during the
execution of the application. This in turn enables the host application to take advantage of
all the computing devices in the system. The OpenCL operation can be described in four
interrelated models: the platform, execution, memory, and programming models. The
platform model is viewed from a hierarchical and abstract perspective. Execution of an
OpenCL program involves simultaneous execution of multiple instances of a kernel on one
or more OpenCL devices. A kernel is the basic executable code unit. OpenCL defines a
multilevel memory model similar to CUDA. OpenCL is designed to be used in GPUs as well
as in other platforms like multi-core CPUs. Therefore, it can support both data parallel [16],
and task parallel [17] programming patterns [11], which are well suited for GPUs and CPUs
architectures, respectively.

CUDA is a parallel programming model developed by NVIDIA . The project started in
2006 and the first version was released in early 2007. The CUDA model is designed to scale
applications with the increasing number of processor cores provided by the GPUs [2].
CUDA provides a development environment that allows developers to use C programming
language. CUDA being a parallel system consists of a host and a computation device. The
computation of tasks is done in the GPU by a set of threads running in parallel. The

garcjournalssubmit@gmail.com 21

mailto:garcjournalssubmit@gmail.com

International Journal of Information, Engineering & Technology

architecture of the GPU threads consists of a two-level hierarchy, i.e. the block and the grid.
The block is a set of few tightly coupled threads, each thread is identified by a thread ID.

On the other hand, the grid is a set of loosely coupled blocks with similar size and
dimension. There is no synchronization at all between the blocks, and an entire grid is
handled by a single GPU. The GPU is organized as a collection of multiprocessors, with each
multiprocessor responsible for handling one or more blocks in a grid. A block is never
divided across multiple multiprocessors. Threads within a block can cooperate by sharing
data through some shared memory, and by synchronizing their execution to coordinate
memory accesses. The directory in which programming codes are stored is as shown in
figure 3.

QBack. - » T 7 ! Search 'l-- Folders: || |255] ™
address |20 Cadvertisements b a Go
% . .
Folders J_“ Eﬂ ;I""]
(& eskrop ~
2 I} My Documents annoyingspam evilTelemark,,. magazines
= g My Comguter
= e Local Disk (C:) = ;
) accounks g 2
) advertisements NEWEpapers radio skyWhiriting
) sudiograblber
+) backup —x —x —x
) basket xn
+] .) .
o j S:':E sporkingEy... belersdsion tokals
H) book_edipse o
* () book_JavaDummies Q @ @
) book_lawvakML — — —

Fig. 3 Directory folders

DirectCompute is an approach adapted by Microsoft to GPU programming.
DirectCompute is a part of the Microsoft DirectX APIs collection [18]. It is also known as
DirectX11 Compute Shader. It was initially released with the DirectX 11 API, but runs on
both DirectX 10 and DirectX 11 graphics processing units. It allows computation
independently of the graphic pipeline, therefore suitable for GPGPUs. The main drawback
of DirectCompute is that it only works on Windows platforms.

Array Building Blocks (ArBB) is also a heterogeneous programming model which
provides a generalized vector-parallel-programming solution for data-intensive
mathematical computation [19]. A user simply expresses computations as operations on
arrays and vectors. ArBB comprises of a C++ standard library interface and a powerful
runtime. A just-in-time (JIT) compiler supplied with the library translates the operations
into target dependent code, where a target could be the host CPU or an attached GPU. At
runtime, ArBB uses Intel’s Threading Building Blocks [1], which contributes to abstract
platform details and threading mechanisms for scalability and performance. Intel’s ArBB
can run data-parallel vector computations on a possibly heterogeneous system. By design,
Intel ArBB prevents parallel programming bugs such as data races and deadlocks.

3.0 Hybrid Parallel Programming Models

Combining programming models is not a new idea; the main aim is to exploit the
strengths of the models such as efficiency, memory savings, ease of programming, and
scalability of the models involved. Rather than developing new languages, the already
available programming models and tools can be mixed. This approach is known as hybrid
(parallel) programming. This programming model is a modern software trend for the
current hybrid hardware architectures. The basic idea is to use message passing across the
distributed nodes and shared memory within a node. Hybrid programming can also involve

garcjournalssubmit@gmail.com 22

mailto:garcjournalssubmit@gmail.com
mailto:garcjournalssubmit@gmail.com
mailto:garcjournalssubmit@gmail.com

International Journal of Information, Engineering & Technology

the use of GPUs as source of computing power. GPU programming approaches, such as
OpenCL, and CUDA could be used. However, since OpenCL directly supports multi-GPU and
GPU+CPU programming its use is not specially extended in the hybrid programming field.
The format for An If statement is shown in figure 2.

FRNTE ERETTR DR NT EY SN SR 1

Aif (|conditicoan|y A

Cmdmen RSO wrd s

| SomeStatem=snts
L Efo vif odauso)

(¢ 2 " -
Oftherstatemeaents Sy slom. ool opedintla

(RLED KIowWn a&s N o CET UL Y
the Melso olsuss)

Fig. 2 An If statement format

There are several models of hybrid parallel programming. In [18] Pthreads and MPI
were combined to develop a parallel file compression program. In this program Pthreads
was used to extend MPI, thereby improving the speed and efficiency of the program.
Additionally, Pthreads is used to generate multiple tasks to be executed on a single
processor simultaneously by using shared memory. MPI allows communication between
the nodes. Another example were Pthreads and MPI are combined is found in [19], here the
model is used for discovering bounded prime numbers. Lastly another example is in [20],
where this model is used to develop a parallel version of RAXML cod for phylogenetic
studies.

In [21] and [22] CUDA and Pthreads were combined to easily support multi-GPU
parallelism. In this model a CPU thread is assigned to each GPU making each device to have
its own context on the host. However, in the first example the programmer must to split the
code for the GPU to have the same amount of work.

A hybrid model based on CUDA and OpenMP could be found in [28], and [29]. In
CUDA model the CPU and GPU cannot share their memory which means that the GPU gets
its data from the CPU. Thus, to exploit the efficiency of the GPU OpenMP is used which
allows the CPU to generate as much data as possible.

Similarly the hybrid model of MPI/OpenMP programming takes advantage of the
underlying features of both programming models. It mixes the explicit decomposition and
task placement of MPI with the simple and fine-grain parallelization of OpenMP. This model
represents the most widespread use of mixed programming on SMP clusters. The reasons
are its portability and the fact that MPI and OpenMP are industry standards. But, it is not
clear that this programming model will always be the most effective mechanism.
Reasonable work has gone into studying this hybrid model [23], [24], [25].

However, some reasons also make the model inefficient such as; shared memory
issues, it may introduce the drawbacks of Open MP, and the runtime libraries may have
negative impact on the program’s performance.

CUDA and MPI hybrid model is useful for parallelizing programs in GPU clusters.
The programming environment and the hardware structure of the cluster node are
different from traditional ones because of the heterogeneous model based on the CPU and
GPU. This model separates process control tasks from data computing tasks. MPI controls
the communication between nodes, the applications and the interactions with the CPU,

garcjournalssubmit@gmail.com 23

mailto:garcjournalssubmit@gmail.com
mailto:garcjournalssubmit@gmail.com
mailto:garcjournalssubmit@gmail.com

International Journal of Information, Engineering & Technology

while the CUDA computes the tasks in the GPU [26], [27]. However, this programming
model is not ideal for parallel applications; there are situations where it delivers poor
performance.

Broadly speaking, there is no general solution for hybrid parallelization even when
considering the same architecture. In practice, the best solution largely depends on the
individual characteristics of each application. Despite the challenges, the hybrid models
offer an attractive way to harness the possibilities provided by current architectures.

4.0 CONCLUSION

Recent studies have shown that with current multi-core CPUs, computer clusters
can blend distributed memory programming among the cluster nodes, and shared memory
parallel programming within the cores of each node. Thus, the hybrid parallel
programming approach is becoming increasingly popular. Therefore, the hybrid approach
offers a way to harness the possibilities of current, and legacy, architectures and systems.
In addition, the easy availability of GPUs on multi-core systems is providing momentum to
a new parallel programming model: heterogeneous programming. This supersedes pure
GPU programming, allowing several multi-core CPUs and several GPUs to collaborate.

References

[1] Diaz, J., C. Mufioz-Caro, and A. Nifio, A Survey of Parallel Programming Models and Tools
in the Multi and Many-Core Era. IEEE Transactions on Parallel and Distributed
Systems, 2012. 23(8): p. 1369-1386.

[2] D. Kirk and W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach.
Morgan Kaufmann, 2010.

[2] W. Hwu, K. Keutzer, and T.G. Mattson, “The concurrency challenge,” IEEE Design and
Test of Computers, vol. 25, no. 4, pp. 312-320, July 2008.

[3] Cao Y], Sun HY, Qian DP, Wu WG. Stable Adaptive Work-Stealing for Concurrent Many-
core Runtime Systems. IEICE Transactions Information and Systems, 2012, E95D(5):I-10.
ACM Queue, vol. 3, no. 7, pp. 54-62, 2005.

[4] W-C. Feng and P. Balaji, “Tools and Environments for Multicore and Many-Core
Architectures,” Computer, vol. 42, no. 12, pp. 26- 27, Dec. 2009.

[5] R.R. Loka, W-C. Feng, and P. Balaji, “Serial Computing Is Not Dead,” Computer, vol. 43,
no. 9, pp. 6-9, Mar. 2010.

[6]]. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and A. White, The
Sourcebook of Parallel Computing. Morgan Kaufmann Publishers, 2003.

[7] Vajda A. Practical Many-Core Programming. Programming Many-Core Chips, 2011:175-
211
[8] K. Kedia, “Hybrid Programming with OpenMP and MPI, Technical Report 18.337],
Massachusetts Inst. of Technology May 2009.

[9] D.A. Jacobsen,].C. Thibaulty, and I. Senocak, “An MPI-CUDA Implementation for
Massively Parallel Incompressible Flow Computations on Multi-GPU Clusters,” Proc. 48th
AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace
Exposition, Jan. 2010.

[10] C.-T. Yang, C.-L. Huang, and C.-F. Li, “Hybrid CUDA, OpenMP, and MPI Parallel
Programming on Multicore GPU Clusters,” Computer Physics Comm., vol. 182, no. 1, 2011.

garcjournalssubmit@gmail.com 24

mailto:garcjournalssubmit@gmail.com

International Journal of Information, Engineering & Technology

[11] M. Macedonia, “The GPU Enters Computing’s Mainstream,” Computer, vol. 36, no.10,
pp.
106-108, Oct. 2003.
[13] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan,
“Brook for GPUs: Stream Computing on Graphics Hardware,” Proc. SIGGRAPH, 2004.
[14] W.R. Mark, R.S. Glanville, K. Akeley, M.]. Kilgard, “Cg: A System for Programming
Graphics Hardware in a C-Like Language,” Proc. SIGGRAPH, 2003.
[15] Sophisticated Library for Vector Parallelism: Intel Array Building Blocks, Intel;
http://software.intel.com/en-us/articles/intelarray-building-blocks, 2010.
[16] W.D. Hillis and G.L. Steele, “Data Parallel Algorithms,” Comm. ACM, vol. 29, pp. 1170-
1183, 1986.
[17] M. Quinn, Parallel Programming in C with MPI and OpenMP. McGraw-Hill, 2004.
[18] C. Wright, “Hybrid Programming Fun: Making Bzip2 Parallel with MPICH2 & pthreads
on the Cray XD1,” Proc. CUG, 2006.
[19] P. Johnson, “Pthread Performance in an MPI Model for Prime Number Generation,”
CSCI 4576 - High-Performance Scientific Computing, Univ. of Colorado, 2007.
[20] W. Pfeiffer and A. Stamatakis, “Hybrid MPI/Pthreads Parallelization of the RAXML
Phylogenetics Code,” Proc. Ninth IEEE Int'l Workshop High Performance Computational
Biology, Apr. 2010.
[21] J.C. Thibault and I. Senocak, “CUDA Implementation of a Navier- Stokes Solver on
Multi-GPU Desktop Platforms for Incompressible Flows,” Proc. 47th AIAA Aerospace
Sciences Meeting, 2010.
[22] S. Jun Park and D. Shires, “Central Processing Unit/Graphics Processing Unit
(CPU/GPU) Hybrid Computing of Synthetic Aperture Radar Algorithm,” Technical Report
ARL-TR-5074, US Army Research Laboratory, 2010.
[23] L. Smith and M. Bulk, “Development of Mixed Mode MPI/ OpenMP Applications,” Proc.
Workshop OpenMP Applications and Tools (WOMPAT ’00), July 2000.
[24] R. Rabenseifner, “Hybrid Parallel Programming on HPC Platforms,” Proc. European
Workshop OpenMP (EWOMP ’03), 2003.
[25] B. Estrade, “Hybrid Programming with MPI and OpenMP,” Proc. High Performance
Computing Workshop, 2009.
[26] Q. Chen and]. Zhang, “A Stream Processor Cluster Architecture Model with the Hybrid
Technology of MPI and CUDA,” Proc. First Int’l Conf. Information Science and Eng. (ICISE
'09), 20009.
[27] J.C. Phillips,]J.E. Stone, and K. Schulten, “Adapting a Message- Driven Parallel
Application to GPU-Accelerated Clusters,” Proc. ACM/IEEE Conf. Supercomputing, 2008.
[28] H. Jang, A. Park, and K. Jung, “Neural Network Implementation using CUDA and
OpenMP,” Proc. Digital Image Computing: Techniques and Applications, pp. 155-161, 2008.
[29] G. Sims, “Parallel Cloth Simulation Using OpenMP and CUDA,” thesis dissertation,
Graduate Faculty of the Louisiana State Univ. and Agricultural and Mechanical College,
20009.

garcjournalssubmit@gmail.com 25

mailto:garcjournalssubmit@gmail.com
http://software.intel.com/en-us/articles/intelarray-building-blocks

