
International Journal of Information, Engineering & Technology

garcjournalssubmit@gmail.com 19

Parallel Programming Models: An Overview of Hybrid
and Heterogeneous Models

Ahmed Ali Umar1; Engr. Mallam Terab Ali2; Muhammad H. Abdulfattah3;

Falmata Bukar Wakil4

1Department of Computer Engineering, University of Maiduguri, Borno State2 &4Department of Computer Engineering Technology Ramat Polytechnic Maiduguri P.M.B.1070 Borno State.3Computer and ICT Centre, University of Maiduguri. mhabdulfattah@unimaid.edu.ngCorrespondence Author: Email emfance@gmail.com

1.0 IntroductionThe impressive rate of improvement and enhancement in technology has led to thedominance of microprocessor based computers in the computing arena. Microprocessorswith single processing unit (CPU) led to a sustained performance increase and costreduction in computer applications for more than two decades. However, this growthbecame stagnant around 2003 due to power constraints [1]. These shortfalls made itdifficult to increase the clock frequencies and the number of tasks performed within eachclock period. Additionally the number of data for processing continues to grow.

International Journal of Information, Engineering & Technology

Volume 11, Issue 4, PP 19-25, ISSN: 2360-9194, January, 2021
Double Blind Peer Reviewed International Research Journal
garcjournalssubmit@gmail.com
Journal Series: Global Academic Research Consortium (garc)

Abstract: The increasing relevance of parallelism in the computational field can be illustrated by
considering its effect on the computing literature over the last decade. Since the switch of the
microprocessor industry to the multi-core model, and the introduction of GPGPU, parallelism has
become a key player in the software arena. Thus, the hybrid parallel programming approach is
becoming increasingly popular. The platform model is viewed from a hierarchical and abstract
perspective. Execution of an OpenCL program involves simultaneous execution of multiple instances
of a kernel on one or more OpenCL devices. In addition, the easy availability of GPUs on multi-core
systems is providing momentum to a new parallel programming model: heterogeneous
programming. This supersedes pure GPU programming, allowing several multi-core CPUs and
several GPUs to collaborate.

Key words: Charcoal Dust, Green moulding sand, metal casting.

International Journal of Information, Engineering & Technology

garcjournalssubmit@gmail.com 19

Parallel Programming Models: An Overview of Hybrid
and Heterogeneous Models

Ahmed Ali Umar1; Engr. Mallam Terab Ali2; Muhammad H. Abdulfattah3;

Falmata Bukar Wakil4

1Department of Computer Engineering, University of Maiduguri, Borno State2 &4Department of Computer Engineering Technology Ramat Polytechnic Maiduguri P.M.B.1070 Borno State.3Computer and ICT Centre, University of Maiduguri. mhabdulfattah@unimaid.edu.ngCorrespondence Author: Email emfance@gmail.com

1.0 IntroductionThe impressive rate of improvement and enhancement in technology has led to thedominance of microprocessor based computers in the computing arena. Microprocessorswith single processing unit (CPU) led to a sustained performance increase and costreduction in computer applications for more than two decades. However, this growthbecame stagnant around 2003 due to power constraints [1]. These shortfalls made itdifficult to increase the clock frequencies and the number of tasks performed within eachclock period. Additionally the number of data for processing continues to grow.

International Journal of Information, Engineering & Technology

Volume 11, Issue 4, PP 19-25, ISSN: 2360-9194, January, 2021
Double Blind Peer Reviewed International Research Journal
garcjournalssubmit@gmail.com
Journal Series: Global Academic Research Consortium (garc)

Abstract: The increasing relevance of parallelism in the computational field can be illustrated by
considering its effect on the computing literature over the last decade. Since the switch of the
microprocessor industry to the multi-core model, and the introduction of GPGPU, parallelism has
become a key player in the software arena. Thus, the hybrid parallel programming approach is
becoming increasingly popular. The platform model is viewed from a hierarchical and abstract
perspective. Execution of an OpenCL program involves simultaneous execution of multiple instances
of a kernel on one or more OpenCL devices. In addition, the easy availability of GPUs on multi-core
systems is providing momentum to a new parallel programming model: heterogeneous
programming. This supersedes pure GPU programming, allowing several multi-core CPUs and
several GPUs to collaborate.

Key words: Charcoal Dust, Green moulding sand, metal casting.

International Journal of Information, Engineering & Technology

garcjournalssubmit@gmail.com 19

Parallel Programming Models: An Overview of Hybrid
and Heterogeneous Models

Ahmed Ali Umar1; Engr. Mallam Terab Ali2; Muhammad H. Abdulfattah3;

Falmata Bukar Wakil4

1Department of Computer Engineering, University of Maiduguri, Borno State2 &4Department of Computer Engineering Technology Ramat Polytechnic Maiduguri P.M.B.1070 Borno State.3Computer and ICT Centre, University of Maiduguri. mhabdulfattah@unimaid.edu.ngCorrespondence Author: Email emfance@gmail.com

1.0 IntroductionThe impressive rate of improvement and enhancement in technology has led to thedominance of microprocessor based computers in the computing arena. Microprocessorswith single processing unit (CPU) led to a sustained performance increase and costreduction in computer applications for more than two decades. However, this growthbecame stagnant around 2003 due to power constraints [1]. These shortfalls made itdifficult to increase the clock frequencies and the number of tasks performed within eachclock period. Additionally the number of data for processing continues to grow.

International Journal of Information, Engineering & Technology

Volume 11, Issue 4, PP 19-25, ISSN: 2360-9194, January, 2021
Double Blind Peer Reviewed International Research Journal
garcjournalssubmit@gmail.com
Journal Series: Global Academic Research Consortium (garc)

Abstract: The increasing relevance of parallelism in the computational field can be illustrated by
considering its effect on the computing literature over the last decade. Since the switch of the
microprocessor industry to the multi-core model, and the introduction of GPGPU, parallelism has
become a key player in the software arena. Thus, the hybrid parallel programming approach is
becoming increasingly popular. The platform model is viewed from a hierarchical and abstract
perspective. Execution of an OpenCL program involves simultaneous execution of multiple instances
of a kernel on one or more OpenCL devices. In addition, the easy availability of GPUs on multi-core
systems is providing momentum to a new parallel programming model: heterogeneous
programming. This supersedes pure GPU programming, allowing several multi-core CPUs and
several GPUs to collaborate.

Key words: Charcoal Dust, Green moulding sand, metal casting.

mailto:garcjournalssubmit@gmail.com
mailto:mhabdulfattah@unimaid.edu
mailto:emfance@gmail.com
mailto:garcjournalssubmit@gmail.com
mailto:garcjournalssubmit@gmail.com
mailto:mhabdulfattah@unimaid.edu
mailto:emfance@gmail.com
mailto:garcjournalssubmit@gmail.com
mailto:garcjournalssubmit@gmail.com
mailto:mhabdulfattah@unimaid.edu
mailto:emfance@gmail.com
mailto:garcjournalssubmit@gmail.com

International Journal of Information, Engineering & Technology

garcjournalssubmit@gmail.com 20

To remedy these limitations processor developers adopted a model where theprocessor has multiple processing units known as cores [3]. Today there are processorswith dozens of cores available in the market and with the rapid growth of semiconductortechnology it will be very common to have number of cores on processors going intohundreds and even thousands in the near future. This kind of processor is referred to asmany core processors. However, to tap all the reward offered by these processors will notbe an easy task, and one of the major challenges will be how to efficiently utilize theavailable computing power [4]. Obviously this gradual shift in computing will have a hugeimpact on software and its development. Almost all software applications are developed toexecute in sequential order which is implemented on conventional single core processors.As such the era of sequential programming is gradually coming to an end [5], [6]. Hence, wecan no longer rely on single core processors for improvement in performance but it can beachieved through multiple and many core processors by using parallel programming whichhas now taken a new star role on the stage [4].Parallel computing can significantly increase the performance of applications byexecuting them on multiple processors. Unfortunately, the scaling of applicationperformance is not equal to the scaling of peak speed, and the programming burden is stillimportant. There is need for the applications to automatically scale to the number ofprocessors. However, for this to come about the applications must be programmed toexploit parallelism. Thus, achieving scalable parallelism largely depends on theapplications developer [7].A parallel programming model is a construct that enables the expression of parallelprograms which can be compiled and executed. The advantages of a programming modelare usually judged on its generality: how well a range of different problems can beexpressed and how well they execute on a range of different architectures. Therefore, theimplementation of a programming model can take several forms such as libraries, languageextensions, or invent new programming model. A good programming model can provide anessential bridge between hardware and software, which means that high-level languagescan be efficiently compiled and executed on specific hardware [8].

Fig. 1 Shows Programming CodesThe availability of General Purpose computation on graphical processing units(GPGPUs) in actual multi-core systems has lead to the Heterogeneous ParallelProgramming (HPP) model. HPP Seeks to harness the capabilities of multi-core CPUs andmany-core GPUs. According to all these hybrid architectures, different parallel

International Journal of Information, Engineering & Technology

garcjournalssubmit@gmail.com 20

To remedy these limitations processor developers adopted a model where theprocessor has multiple processing units known as cores [3]. Today there are processorswith dozens of cores available in the market and with the rapid growth of semiconductortechnology it will be very common to have number of cores on processors going intohundreds and even thousands in the near future. This kind of processor is referred to asmany core processors. However, to tap all the reward offered by these processors will notbe an easy task, and one of the major challenges will be how to efficiently utilize theavailable computing power [4]. Obviously this gradual shift in computing will have a hugeimpact on software and its development. Almost all software applications are developed toexecute in sequential order which is implemented on conventional single core processors.As such the era of sequential programming is gradually coming to an end [5], [6]. Hence, wecan no longer rely on single core processors for improvement in performance but it can beachieved through multiple and many core processors by using parallel programming whichhas now taken a new star role on the stage [4].Parallel computing can significantly increase the performance of applications byexecuting them on multiple processors. Unfortunately, the scaling of applicationperformance is not equal to the scaling of peak speed, and the programming burden is stillimportant. There is need for the applications to automatically scale to the number ofprocessors. However, for this to come about the applications must be programmed toexploit parallelism. Thus, achieving scalable parallelism largely depends on theapplications developer [7].A parallel programming model is a construct that enables the expression of parallelprograms which can be compiled and executed. The advantages of a programming modelare usually judged on its generality: how well a range of different problems can beexpressed and how well they execute on a range of different architectures. Therefore, theimplementation of a programming model can take several forms such as libraries, languageextensions, or invent new programming model. A good programming model can provide anessential bridge between hardware and software, which means that high-level languagescan be efficiently compiled and executed on specific hardware [8].

Fig. 1 Shows Programming CodesThe availability of General Purpose computation on graphical processing units(GPGPUs) in actual multi-core systems has lead to the Heterogeneous ParallelProgramming (HPP) model. HPP Seeks to harness the capabilities of multi-core CPUs andmany-core GPUs. According to all these hybrid architectures, different parallel

International Journal of Information, Engineering & Technology

garcjournalssubmit@gmail.com 20

To remedy these limitations processor developers adopted a model where theprocessor has multiple processing units known as cores [3]. Today there are processorswith dozens of cores available in the market and with the rapid growth of semiconductortechnology it will be very common to have number of cores on processors going intohundreds and even thousands in the near future. This kind of processor is referred to asmany core processors. However, to tap all the reward offered by these processors will notbe an easy task, and one of the major challenges will be how to efficiently utilize theavailable computing power [4]. Obviously this gradual shift in computing will have a hugeimpact on software and its development. Almost all software applications are developed toexecute in sequential order which is implemented on conventional single core processors.As such the era of sequential programming is gradually coming to an end [5], [6]. Hence, wecan no longer rely on single core processors for improvement in performance but it can beachieved through multiple and many core processors by using parallel programming whichhas now taken a new star role on the stage [4].Parallel computing can significantly increase the performance of applications byexecuting them on multiple processors. Unfortunately, the scaling of applicationperformance is not equal to the scaling of peak speed, and the programming burden is stillimportant. There is need for the applications to automatically scale to the number ofprocessors. However, for this to come about the applications must be programmed toexploit parallelism. Thus, achieving scalable parallelism largely depends on theapplications developer [7].A parallel programming model is a construct that enables the expression of parallelprograms which can be compiled and executed. The advantages of a programming modelare usually judged on its generality: how well a range of different problems can beexpressed and how well they execute on a range of different architectures. Therefore, theimplementation of a programming model can take several forms such as libraries, languageextensions, or invent new programming model. A good programming model can provide anessential bridge between hardware and software, which means that high-level languagescan be efficiently compiled and executed on specific hardware [8].

Fig. 1 Shows Programming CodesThe availability of General Purpose computation on graphical processing units(GPGPUs) in actual multi-core systems has lead to the Heterogeneous ParallelProgramming (HPP) model. HPP Seeks to harness the capabilities of multi-core CPUs andmany-core GPUs. According to all these hybrid architectures, different parallel

mailto:garcjournalssubmit@gmail.com
mailto:garcjournalssubmit@gmail.com
mailto:garcjournalssubmit@gmail.com

International Journal of Information, Engineering & Technology

garcjournalssubmit@gmail.com 21

programming models can be mixed in what is called hybrid parallel programming. A wellplanned implementation of hybrid parallel programs can generate massive speedups in theotherwise pure homogeneous implementations [9]. The same can be applied to hybridprogramming involving GPUs and distributed architectures [10], [11].In this paper, parallel programming models are reviewed with special considerationto heterogeneous and hybrid programming models in relation to their suitability for HighPerformance Computing applications.
2.0 Heterogeneous Parallel Programming ModelsIn early 2001 NVIDIA released the first programmable GPU: GeForce3. In 2003 theSiggraph/ Eurographics Graphics Hardware workshop, held in San Diego, showed a changefrom graphics to non-graphics applications of the GPUs [12]. Hence, the concept of generalpurpose graphical processing unit was born. Nowadays, one or multiple host CPUs and oneor more GPUs can be found in a single system. Thus, the name heterogeneous system andthe emergence of a programming model oriented toward these systems.Heterogeneous model is predicted to become a main approach due to themicroprocessors industry interest in the development of Accelerated Processing Units(APUs). An APU combines the CPU (multi-core) and a GPU on the same die. In the firstCPU+GPU systems, languages as Brook [13] or Cg [14] were used. However, NVIDIA haspopularized (Compute Unified Device Architecture) CUDA [2] as the principal model andlanguage to program their GPUs. More recently, the industry has worked together on theOpen Computing Language (OpenCL) standard [17] as a common model for heterogeneousprogramming. In addition, different proprietary solutions, such as Microsoft’sDirectCompute or Intel’s Array Building Blocks (ArBB) [15], are available. Here theseapproaches are reviewed.OpenCL is an open source program for general purpose parallel programmingdeveloped for CPUs, GPUs and other processors. It was first released in late 2008 byKhronos Group. Basically it separates between the devices and the host. The rationalebehind OpenCL is to write functions that execute on OpenCL devices and APIs for creatingand managing these kernels. The kernels are compiled for the targeted device during theexecution of the application. This in turn enables the host application to take advantage ofall the computing devices in the system. The OpenCL operation can be described in fourinterrelated models: the platform, execution, memory, and programming models. Theplatform model is viewed from a hierarchical and abstract perspective. Execution of anOpenCL program involves simultaneous execution of multiple instances of a kernel on oneor more OpenCL devices. A kernel is the basic executable code unit. OpenCL defines amultilevel memory model similar to CUDA. OpenCL is designed to be used in GPUs as wellas in other platforms like multi-core CPUs. Therefore, it can support both data parallel [16],and task parallel [17] programming patterns [11], which are well suited for GPUs and CPUsarchitectures, respectively.CUDA is a parallel programming model developed by NVIDIA . The project started in2006 and the first version was released in early 2007. The CUDA model is designed to scaleapplications with the increasing number of processor cores provided by the GPUs [2].CUDA provides a development environment that allows developers to use C programminglanguage. CUDA being a parallel system consists of a host and a computation device. Thecomputation of tasks is done in the GPU by a set of threads running in parallel. The

mailto:garcjournalssubmit@gmail.com

International Journal of Information, Engineering & Technology

garcjournalssubmit@gmail.com 22

architecture of the GPU threads consists of a two-level hierarchy, i.e. the block and the grid.The block is a set of few tightly coupled threads, each thread is identified by a thread ID.On the other hand, the grid is a set of loosely coupled blocks with similar size anddimension. There is no synchronization at all between the blocks, and an entire grid ishandled by a single GPU. The GPU is organized as a collection of multiprocessors, with eachmultiprocessor responsible for handling one or more blocks in a grid. A block is neverdivided across multiple multiprocessors. Threads within a block can cooperate by sharingdata through some shared memory, and by synchronizing their execution to coordinatememory accesses. The directory in which programming codes are stored is as shown infigure 3.

Fig. 3 Directory foldersDirectCompute is an approach adapted by Microsoft to GPU programming.DirectCompute is a part of the Microsoft DirectX APIs collection [18]. It is also known asDirectX11 Compute Shader. It was initially released with the DirectX 11 API, but runs onboth DirectX 10 and DirectX 11 graphics processing units. It allows computationindependently of the graphic pipeline, therefore suitable for GPGPUs. The main drawbackof DirectCompute is that it only works on Windows platforms.Array Building Blocks (ArBB) is also a heterogeneous programming model whichprovides a generalized vector-parallel-programming solution for data-intensivemathematical computation [19]. A user simply expresses computations as operations onarrays and vectors. ArBB comprises of a C++ standard library interface and a powerfulruntime. A just-in-time (JIT) compiler supplied with the library translates the operationsinto target dependent code, where a target could be the host CPU or an attached GPU. Atruntime, ArBB uses Intel’s Threading Building Blocks [1], which contributes to abstractplatform details and threading mechanisms for scalability and performance. Intel’s ArBBcan run data-parallel vector computations on a possibly heterogeneous system. By design,Intel ArBB prevents parallel programming bugs such as data races and deadlocks.
3.0 Hybrid Parallel Programming ModelsCombining programming models is not a new idea; the main aim is to exploit thestrengths of the models such as efficiency, memory savings, ease of programming, andscalability of the models involved. Rather than developing new languages, the alreadyavailable programming models and tools can be mixed. This approach is known as hybrid(parallel) programming. This programming model is a modern software trend for thecurrent hybrid hardware architectures. The basic idea is to use message passing across thedistributed nodes and shared memory within a node. Hybrid programming can also involve

International Journal of Information, Engineering & Technology

garcjournalssubmit@gmail.com 22

architecture of the GPU threads consists of a two-level hierarchy, i.e. the block and the grid.The block is a set of few tightly coupled threads, each thread is identified by a thread ID.On the other hand, the grid is a set of loosely coupled blocks with similar size anddimension. There is no synchronization at all between the blocks, and an entire grid ishandled by a single GPU. The GPU is organized as a collection of multiprocessors, with eachmultiprocessor responsible for handling one or more blocks in a grid. A block is neverdivided across multiple multiprocessors. Threads within a block can cooperate by sharingdata through some shared memory, and by synchronizing their execution to coordinatememory accesses. The directory in which programming codes are stored is as shown infigure 3.

Fig. 3 Directory foldersDirectCompute is an approach adapted by Microsoft to GPU programming.DirectCompute is a part of the Microsoft DirectX APIs collection [18]. It is also known asDirectX11 Compute Shader. It was initially released with the DirectX 11 API, but runs onboth DirectX 10 and DirectX 11 graphics processing units. It allows computationindependently of the graphic pipeline, therefore suitable for GPGPUs. The main drawbackof DirectCompute is that it only works on Windows platforms.Array Building Blocks (ArBB) is also a heterogeneous programming model whichprovides a generalized vector-parallel-programming solution for data-intensivemathematical computation [19]. A user simply expresses computations as operations onarrays and vectors. ArBB comprises of a C++ standard library interface and a powerfulruntime. A just-in-time (JIT) compiler supplied with the library translates the operationsinto target dependent code, where a target could be the host CPU or an attached GPU. Atruntime, ArBB uses Intel’s Threading Building Blocks [1], which contributes to abstractplatform details and threading mechanisms for scalability and performance. Intel’s ArBBcan run data-parallel vector computations on a possibly heterogeneous system. By design,Intel ArBB prevents parallel programming bugs such as data races and deadlocks.
3.0 Hybrid Parallel Programming ModelsCombining programming models is not a new idea; the main aim is to exploit thestrengths of the models such as efficiency, memory savings, ease of programming, andscalability of the models involved. Rather than developing new languages, the alreadyavailable programming models and tools can be mixed. This approach is known as hybrid(parallel) programming. This programming model is a modern software trend for thecurrent hybrid hardware architectures. The basic idea is to use message passing across thedistributed nodes and shared memory within a node. Hybrid programming can also involve

International Journal of Information, Engineering & Technology

garcjournalssubmit@gmail.com 22

architecture of the GPU threads consists of a two-level hierarchy, i.e. the block and the grid.The block is a set of few tightly coupled threads, each thread is identified by a thread ID.On the other hand, the grid is a set of loosely coupled blocks with similar size anddimension. There is no synchronization at all between the blocks, and an entire grid ishandled by a single GPU. The GPU is organized as a collection of multiprocessors, with eachmultiprocessor responsible for handling one or more blocks in a grid. A block is neverdivided across multiple multiprocessors. Threads within a block can cooperate by sharingdata through some shared memory, and by synchronizing their execution to coordinatememory accesses. The directory in which programming codes are stored is as shown infigure 3.

Fig. 3 Directory foldersDirectCompute is an approach adapted by Microsoft to GPU programming.DirectCompute is a part of the Microsoft DirectX APIs collection [18]. It is also known asDirectX11 Compute Shader. It was initially released with the DirectX 11 API, but runs onboth DirectX 10 and DirectX 11 graphics processing units. It allows computationindependently of the graphic pipeline, therefore suitable for GPGPUs. The main drawbackof DirectCompute is that it only works on Windows platforms.Array Building Blocks (ArBB) is also a heterogeneous programming model whichprovides a generalized vector-parallel-programming solution for data-intensivemathematical computation [19]. A user simply expresses computations as operations onarrays and vectors. ArBB comprises of a C++ standard library interface and a powerfulruntime. A just-in-time (JIT) compiler supplied with the library translates the operationsinto target dependent code, where a target could be the host CPU or an attached GPU. Atruntime, ArBB uses Intel’s Threading Building Blocks [1], which contributes to abstractplatform details and threading mechanisms for scalability and performance. Intel’s ArBBcan run data-parallel vector computations on a possibly heterogeneous system. By design,Intel ArBB prevents parallel programming bugs such as data races and deadlocks.
3.0 Hybrid Parallel Programming ModelsCombining programming models is not a new idea; the main aim is to exploit thestrengths of the models such as efficiency, memory savings, ease of programming, andscalability of the models involved. Rather than developing new languages, the alreadyavailable programming models and tools can be mixed. This approach is known as hybrid(parallel) programming. This programming model is a modern software trend for thecurrent hybrid hardware architectures. The basic idea is to use message passing across thedistributed nodes and shared memory within a node. Hybrid programming can also involve

mailto:garcjournalssubmit@gmail.com
mailto:garcjournalssubmit@gmail.com
mailto:garcjournalssubmit@gmail.com

International Journal of Information, Engineering & Technology

garcjournalssubmit@gmail.com 23

the use of GPUs as source of computing power. GPU programming approaches, such asOpenCL, and CUDA could be used. However, since OpenCL directly supports multi-GPU andGPU+CPU programming its use is not specially extended in the hybrid programming field.The format for An If statement is shown in figure 2.

Fig. 2 An If statement formatThere are several models of hybrid parallel programming. In [18] Pthreads and MPIwere combined to develop a parallel file compression program. In this program Pthreadswas used to extend MPI, thereby improving the speed and efficiency of the program.Additionally, Pthreads is used to generate multiple tasks to be executed on a singleprocessor simultaneously by using shared memory. MPI allows communication betweenthe nodes. Another example were Pthreads and MPI are combined is found in [19], here themodel is used for discovering bounded prime numbers. Lastly another example is in [20],where this model is used to develop a parallel version of RAxML cod for phylogeneticstudies.In [21] and [22] CUDA and Pthreads were combined to easily support multi-GPUparallelism. In this model a CPU thread is assigned to each GPU making each device to haveits own context on the host. However, in the first example the programmer must to split thecode for the GPU to have the same amount of work.A hybrid model based on CUDA and OpenMP could be found in [28], and [29]. InCUDA model the CPU and GPU cannot share their memory which means that the GPU getsits data from the CPU. Thus, to exploit the efficiency of the GPU OpenMP is used whichallows the CPU to generate as much data as possible.Similarly the hybrid model of MPI/OpenMP programming takes advantage of theunderlying features of both programming models. It mixes the explicit decomposition andtask placement of MPI with the simple and fine-grain parallelization of OpenMP. This modelrepresents the most widespread use of mixed programming on SMP clusters. The reasonsare its portability and the fact that MPI and OpenMP are industry standards. But, it is notclear that this programming model will always be the most effective mechanism.Reasonable work has gone into studying this hybrid model [23], [24], [25].However, some reasons also make the model inefficient such as; shared memoryissues, it may introduce the drawbacks of Open MP, and the runtime libraries may havenegative impact on the program’s performance.CUDA and MPI hybrid model is useful for parallelizing programs in GPU clusters.The programming environment and the hardware structure of the cluster node aredifferent from traditional ones because of the heterogeneous model based on the CPU andGPU. This model separates process control tasks from data computing tasks. MPI controlsthe communication between nodes, the applications and the interactions with the CPU,

International Journal of Information, Engineering & Technology

garcjournalssubmit@gmail.com 23

the use of GPUs as source of computing power. GPU programming approaches, such asOpenCL, and CUDA could be used. However, since OpenCL directly supports multi-GPU andGPU+CPU programming its use is not specially extended in the hybrid programming field.The format for An If statement is shown in figure 2.

Fig. 2 An If statement formatThere are several models of hybrid parallel programming. In [18] Pthreads and MPIwere combined to develop a parallel file compression program. In this program Pthreadswas used to extend MPI, thereby improving the speed and efficiency of the program.Additionally, Pthreads is used to generate multiple tasks to be executed on a singleprocessor simultaneously by using shared memory. MPI allows communication betweenthe nodes. Another example were Pthreads and MPI are combined is found in [19], here themodel is used for discovering bounded prime numbers. Lastly another example is in [20],where this model is used to develop a parallel version of RAxML cod for phylogeneticstudies.In [21] and [22] CUDA and Pthreads were combined to easily support multi-GPUparallelism. In this model a CPU thread is assigned to each GPU making each device to haveits own context on the host. However, in the first example the programmer must to split thecode for the GPU to have the same amount of work.A hybrid model based on CUDA and OpenMP could be found in [28], and [29]. InCUDA model the CPU and GPU cannot share their memory which means that the GPU getsits data from the CPU. Thus, to exploit the efficiency of the GPU OpenMP is used whichallows the CPU to generate as much data as possible.Similarly the hybrid model of MPI/OpenMP programming takes advantage of theunderlying features of both programming models. It mixes the explicit decomposition andtask placement of MPI with the simple and fine-grain parallelization of OpenMP. This modelrepresents the most widespread use of mixed programming on SMP clusters. The reasonsare its portability and the fact that MPI and OpenMP are industry standards. But, it is notclear that this programming model will always be the most effective mechanism.Reasonable work has gone into studying this hybrid model [23], [24], [25].However, some reasons also make the model inefficient such as; shared memoryissues, it may introduce the drawbacks of Open MP, and the runtime libraries may havenegative impact on the program’s performance.CUDA and MPI hybrid model is useful for parallelizing programs in GPU clusters.The programming environment and the hardware structure of the cluster node aredifferent from traditional ones because of the heterogeneous model based on the CPU andGPU. This model separates process control tasks from data computing tasks. MPI controlsthe communication between nodes, the applications and the interactions with the CPU,

International Journal of Information, Engineering & Technology

garcjournalssubmit@gmail.com 23

the use of GPUs as source of computing power. GPU programming approaches, such asOpenCL, and CUDA could be used. However, since OpenCL directly supports multi-GPU andGPU+CPU programming its use is not specially extended in the hybrid programming field.The format for An If statement is shown in figure 2.

Fig. 2 An If statement formatThere are several models of hybrid parallel programming. In [18] Pthreads and MPIwere combined to develop a parallel file compression program. In this program Pthreadswas used to extend MPI, thereby improving the speed and efficiency of the program.Additionally, Pthreads is used to generate multiple tasks to be executed on a singleprocessor simultaneously by using shared memory. MPI allows communication betweenthe nodes. Another example were Pthreads and MPI are combined is found in [19], here themodel is used for discovering bounded prime numbers. Lastly another example is in [20],where this model is used to develop a parallel version of RAxML cod for phylogeneticstudies.In [21] and [22] CUDA and Pthreads were combined to easily support multi-GPUparallelism. In this model a CPU thread is assigned to each GPU making each device to haveits own context on the host. However, in the first example the programmer must to split thecode for the GPU to have the same amount of work.A hybrid model based on CUDA and OpenMP could be found in [28], and [29]. InCUDA model the CPU and GPU cannot share their memory which means that the GPU getsits data from the CPU. Thus, to exploit the efficiency of the GPU OpenMP is used whichallows the CPU to generate as much data as possible.Similarly the hybrid model of MPI/OpenMP programming takes advantage of theunderlying features of both programming models. It mixes the explicit decomposition andtask placement of MPI with the simple and fine-grain parallelization of OpenMP. This modelrepresents the most widespread use of mixed programming on SMP clusters. The reasonsare its portability and the fact that MPI and OpenMP are industry standards. But, it is notclear that this programming model will always be the most effective mechanism.Reasonable work has gone into studying this hybrid model [23], [24], [25].However, some reasons also make the model inefficient such as; shared memoryissues, it may introduce the drawbacks of Open MP, and the runtime libraries may havenegative impact on the program’s performance.CUDA and MPI hybrid model is useful for parallelizing programs in GPU clusters.The programming environment and the hardware structure of the cluster node aredifferent from traditional ones because of the heterogeneous model based on the CPU andGPU. This model separates process control tasks from data computing tasks. MPI controlsthe communication between nodes, the applications and the interactions with the CPU,

mailto:garcjournalssubmit@gmail.com
mailto:garcjournalssubmit@gmail.com
mailto:garcjournalssubmit@gmail.com

International Journal of Information, Engineering & Technology

garcjournalssubmit@gmail.com 24

while the CUDA computes the tasks in the GPU [26], [27]. However, this programmingmodel is not ideal for parallel applications; there are situations where it delivers poorperformance.Broadly speaking, there is no general solution for hybrid parallelization even whenconsidering the same architecture. In practice, the best solution largely depends on theindividual characteristics of each application. Despite the challenges, the hybrid modelsoffer an attractive way to harness the possibilities provided by current architectures.
4.0 CONCLUSIONRecent studies have shown that with current multi-core CPUs, computer clusterscan blend distributed memory programming among the cluster nodes, and shared memoryparallel programming within the cores of each node. Thus, the hybrid parallelprogramming approach is becoming increasingly popular. Therefore, the hybrid approachoffers a way to harness the possibilities of current, and legacy, architectures and systems.In addition, the easy availability of GPUs on multi-core systems is providing momentum toa new parallel programming model: heterogeneous programming. This supersedes pureGPU programming, allowing several multi-core CPUs and several GPUs to collaborate.
References[1] Diaz, J., C. Muñoz-Caro, and A. Niño, A Survey of Parallel Programming Models and Toolsin the Multi and Many-Core Era. IEEE Transactions on Parallel and DistributedSystems, 2012. 23(8): p. 1369-1386.[2] D. Kirk and W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach.Morgan Kaufmann, 2010.[2] W. Hwu, K. Keutzer, and T.G. Mattson, “The concurrency challenge,” IEEE Design andTest of Computers, vol. 25, no. 4, pp. 312-320, July 2008.[3] Cao YJ, Sun HY, Qian DP, Wu WG. Stable Adaptive Work-Stealing for Concurrent Many-core Runtime Systems. IEICE Transactions Information and Systems, 2012, E95D(5):I-IO.ACM Queue, vol. 3, no. 7, pp. 54-62, 2005.[4] W-C. Feng and P. Balaji, “Tools and Environments for Multicore and Many-CoreArchitectures,” Computer, vol. 42, no. 12, pp. 26- 27, Dec. 2009.[5] R.R. Loka, W-C. Feng, and P. Balaji, “Serial Computing Is Not Dead,” Computer, vol. 43,no. 9, pp. 6-9, Mar. 2010.[6] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and A. White, TheSourcebook of Parallel Computing. Morgan Kaufmann Publishers, 2003.[7] Vajda A. Practical Many-Core Programming. Programming Many-Core Chips, 2011:175-21l.[8] K. Kedia, “Hybrid Programming with OpenMP and MPI, Technical Report 18.337J,Massachusetts Inst. of Technology May 2009.[9] D.A. Jacobsen, J.C. Thibaulty, and I. Senocak, “An MPI-CUDA Implementation forMassively Parallel Incompressible Flow Computations on Multi-GPU Clusters,” Proc. 48thAIAA Aerospace Sciences Meeting Including the New Horizons Forum and AerospaceExposition, Jan. 2010.[10] C.-T. Yang, C.-L. Huang, and C.-F. Li, “Hybrid CUDA, OpenMP, and MPI ParallelProgramming on Multicore GPU Clusters,” Computer Physics Comm., vol. 182, no. 1, 2011.

mailto:garcjournalssubmit@gmail.com

International Journal of Information, Engineering & Technology

garcjournalssubmit@gmail.com 25

[11] M. Macedonia, “The GPU Enters Computing’s Mainstream,” Computer, vol. 36, no.10,pp. 106-108, Oct. 2003.[13] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan,“Brook for GPUs: Stream Computing on Graphics Hardware,” Proc. SIGGRAPH, 2004.[14] W.R. Mark, R.S. Glanville, K. Akeley, M.J. Kilgard, “Cg: A System for ProgrammingGraphics Hardware in a C-Like Language,” Proc. SIGGRAPH, 2003.[15] Sophisticated Library for Vector Parallelism: Intel Array Building Blocks, Intel;http://software.intel.com/en-us/articles/intelarray-building-blocks, 2010.[16] W.D. Hillis and G.L. Steele, “Data Parallel Algorithms,” Comm. ACM, vol. 29, pp. 1170-1183, 1986.[17] M. Quinn, Parallel Programming in C with MPI and OpenMP. McGraw-Hill, 2004.[18] C. Wright, “Hybrid Programming Fun: Making Bzip2 Parallel with MPICH2 & pthreadson the Cray XD1,” Proc. CUG, 2006.[19] P. Johnson, “Pthread Performance in an MPI Model for Prime Number Generation,”CSCI 4576 - High-Performance Scientific Computing, Univ. of Colorado, 2007.[20] W. Pfeiffer and A. Stamatakis, “Hybrid MPI/Pthreads Parallelization of the RAxMLPhylogenetics Code,” Proc. Ninth IEEE Int’l Workshop High Performance ComputationalBiology, Apr. 2010.[21] J.C. Thibault and I. Senocak, “CUDA Implementation of a Navier- Stokes Solver onMulti-GPU Desktop Platforms for Incompressible Flows,” Proc. 47th AIAA AerospaceSciences Meeting, 2010.[22] S. Jun Park and D. Shires, “Central Processing Unit/Graphics Processing Unit(CPU/GPU) Hybrid Computing of Synthetic Aperture Radar Algorithm,” Technical ReportARL-TR-5074, US Army Research Laboratory, 2010.[23] L. Smith and M. Bulk, “Development of Mixed Mode MPI/ OpenMP Applications,” Proc.Workshop OpenMP Applications and Tools (WOMPAT ’00), July 2000.[24] R. Rabenseifner, “Hybrid Parallel Programming on HPC Platforms,” Proc. EuropeanWorkshop OpenMP (EWOMP ’03), 2003.[25] B. Estrade, “Hybrid Programming with MPI and OpenMP,” Proc. High PerformanceComputing Workshop, 2009.[26] Q. Chen and J. Zhang, “A Stream Processor Cluster Architecture Model with the HybridTechnology of MPI and CUDA,” Proc. First Int’l Conf. Information Science and Eng. (ICISE’09), 2009.[27] J.C. Phillips, J.E. Stone, and K. Schulten, “Adapting a Message- Driven ParallelApplication to GPU-Accelerated Clusters,” Proc. ACM/IEEE Conf. Supercomputing, 2008.[28] H. Jang, A. Park, and K. Jung, “Neural Network Implementation using CUDA andOpenMP,” Proc. Digital Image Computing: Techniques and Applications, pp. 155-161, 2008.[29] G. Sims, “Parallel Cloth Simulation Using OpenMP and CUDA,” thesis dissertation,Graduate Faculty of the Louisiana State Univ. and Agricultural and Mechanical College,2009.

mailto:garcjournalssubmit@gmail.com
http://software.intel.com/en-us/articles/intelarray-building-blocks

