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Abstract: Wireless sensor networks (WSNs) consist of spatial distribution of sensors which co-operatively
monitor the environment for certain phenomenon of interest such as temperature, humidity, pressure etc,
and send their sensed data through multi-hop route to the sink.. These nodes may vary between hundreds
to thousands depending on the size and nature of data (signals) to be detected. Wireless sensor networks
are expected to operate over long periods without being attended to. The range of this period may span
from some months to even years. However, due to its resource constraints i.e. limited battery power, low
bandwidth, limited sensing range and low memory. It is pertinent that its resources must be optimally
utilized. This paper addresses a secured routing protocol to a specified sink in a multi-sink scenario. It is
a subset of a novel algorithm required to securely route to multiple mobile sinks in WSN. It employs
reinforcement learning paradigm and in particular (Q-learning) while the transition (action) is modeled
as a Partially Observable Markov Decision Process.

Index Terms: reinforcement learning, Q-learning, Trust mechanism, computational intelligence,
localization

1.    Introduction
WSNs are composed of spatially distributed sensor nodes that cooperatively monitor
environmental changes over time. Sensors sense the data and transmit it to the sink (gateway
between sensor nodes and end users) through multi-hop routing. A key challenge in the WSN
environment is that the resource-constraint (Mac Ruair and Keane, 2007) sensor nodes need to
be deployed for prolonged time periods, frequently unattended in remote environments, which
not only requires the optimal use of network resources but also the provision of strong security
measures. The unreliable wireless channels and unattended operations make it very easy to
compromise/capture the nodes. In Nigeria the menace of crude oil pipeline vandalization has cost
the federal government huge fortune, hence no cost should be spared in protecting this huge
resource. This can be implemented through an appropriate deployment of a secured and energy
efficient routing protocol using wireless sensor networks to monitor online environmental
phenomenon such as, pressure, temperature and flow rate of the crude oil in the pipes.  A lot of
effort has gone into secured routing in Wireless sensor networks. The current approach is the
combined use of cryptography and trust mechanism, this can be found in the works of RFSN
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(Ganeriwal et al., 2008) and TARP (Rezgui and Eltoweissy, 2007). However this approach is not
resilient to adversarial nodes capable of compromising this trust mechanism. These adversarial
nodes can achieve this by giving false recommendation about neighbour nodes. Secondly these
protocols require the explicit model of the network topology, a requirement that will be too much
for the memory constrained wireless sensor network nodes. Thirdly in an attempt to isolate
adversarial nodes using the trust mechanism, a lot of control packets is included in the protocol
which increases network overhead.

This paper employs Q-learning for the protocol design. Q-learning (Walkins C 1995) is a
reinforcement learning technique that models sequential decision making in a partially
observable environment making it an ideal choice for nodes in WSNs that need to choose a
suitable next- hop neighbour to route packets with only limited information Its strength lies in
the fact that it doesn’t require an explicit model of the network topology, (It updates its Q-value
based on the agent’s interaction with the environment). It only stores the outcome of the agent’s
interaction with the environment, hence it can be easily deployed on the memory constrained
WSN. It has been shown that Q-learning converges to the optimal action-value function
(Bertsekas D. P  and  Tsitsiklis J. N 2001), (Jaakkola T. et al 1999) However, it suffers from slow
convergence, especially when the discount factor γ is close to one ( Even E. and Mansour Y 2006),
(Szepesv. C.S. 2000)  The main reason for the slow convergence of Q-learning is the combination
of the sample-based stochastic approximation (that makes use of a decaying learning rate) and
the fact that the Bellman operator propagates information throughout the whole space (specially
when γ is close to 1). This is taken care of in this protocol because the learning rate here is 1, i.e.
the initial Q-value is a function of the number of nodes and neighbour to each nodes, unlike the
random value used in the original Q-learning Hence the Q-value is bound to successively reduce
and converge more quickly to the optimal value instead of oscillating as in the original Q-value
model and secondly each node stores only the routing table of its neighbour nodes instead of all
the nodes in the network. This gives the protocol its localized nature.

The use of the Partially Observable Markov Decision Process (POMDP) model within
the Q-learning model, (Irissappane et al., 2014) will help to simultaneously address security
issues and energy constraints while routing in WSNs. But, the POMDP model for such a
decision making problem is large, and even when representing it using factored representations
[Poupart, 2005], state-of-the-art off-line solution methods fail to find acceptable POMDP
solutions. Though on-line methods [Ross et al., 2008] can improve scalability, they are not
applicable due to the energy constraints of WSNs. To overcome the above issues, the transition
parameter (routing) in the Q-learning will be  modeled  using a hierarchical POMDP (called
Secure Routing POMDP (SRP)). Factored representation will be employed to address the
complexity in solving each SRP component. The SRP hierarchy (Fig. 1) consists of the routing
POMDP for making routing decisions, the alarm POMDP for sending/receiving alarms about
malicious nodes and the fitness POMDP to compute the fitness (suitability) of nodes to route
packets. As major contributions, we: 1) present the SRP model which can optimize the tradeoff
between better security and energy savings in WSNs; 2) demonstrate that SRP can effectively
deal with black-hole, on-off attacks and other attacks targeting the trust system; 3) conduct
extensive evaluation in a simulated and a real-world testbed, showing the effectiveness of SRP
against state-of-the-art trust based routing schemes. The above contributions greatly help to
facilitate the employment of WSNs in hostile environments., The rest of the paper is organized
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as follows: Section 2 looks into related works, here current security enabled WSN routing
algorithm are highlighted, section 3 considers the problem of secure routing in wireless sensor
networks and goes on to explain the different components of the SFROMS protocol proffered in
this paper, section 4 provides a detailed description of the SFROMS model using Q-learning,
section 5 describes the SFROMS protocol, section 6 shows the results obtained through
simulation and hardware test-bed, while section 7 concludes the paper and highlights areas for
future research.

2   Related Work
In RFSN: Reputation based Framework for High Integrity Sensor Networks. (Ganeriwal et al.,
2008), the quality of a node was determined using the Beta distribution on the cooperation
information collected from a watchdog (Marti S et al., 2000) mechanism as well as from
recommendations given by other nodes. In TARP (Rezgui and Eltoweissy, 2007) a trust
mechanism is employed which isolates routing through malicious nodes by assessing each node
neighbour’s forwarding ratio using both direct evaluation (RSSI) and recommendation
information from other nodes. However, the above trust schemes are not resilient to sophisticated
unfair rating attacks which target the trust systems and do not effectively consider the energy
constraints of WSNs. In CONFIDANT (Buchegger and Le Boudec, 2002) the authors use a
broadcasting mechanism to send alarms about malicious nodes, however it is still susceptible to
unfair ratings, where nodes can send false alarms in a sophisticated manner. The broadcast nature
of the protocol also makes it memory intensive (i.e it doesn’t employ the neighbourhood
mechanism where the routing table comprises of routes to only neighbour nodes), and hence
infeasible in WSN.  In Nurmi, (2007) the author proposed a POMDP based routing scheme that
estimates its component states composed of neighbour nodes local parameters (selfishness and
energy limitation). However, it uses gradient techniques (shortest path) to determine policies
which (as is shown empirically), can be far from optimal. Also, it does not use recommendation
information from other sensor nodes. This it does in other to reduce the overhead in memory
requirements, taking into cognizance the limited memory capability in WSNs.

Hierarchical POMDP based approaches have been studied in literature to improve on the
scalability of the algorithm such as is done in LEACH for routing. (Zhang and Sridharan, 2012;
Pineau and Thrun, 2002; Theocharous, 2002; Foka and Trahanias, 2007). Hierarchical POMDP
uses action based decomposition (action hierarchy), state space abstraction, or both. In our
approach, we consider the action hierarchy as in [Pineau and Thrun, 2002] because the routing
problem can be easily partitioned into sub-problems based on the actions (see Fig. 1).

3  Secure Routing Problem for WSNs
A network N = {ni | i = 1 ……|N|} of sensor nodes is considered. The neighbourhood of each
node ni consists of sensors reachable within the transmission radius r. Every node independently
optimizes its routing behaviour and chooses a next hop neighbour (using the SFROMS model
described in Section 5) to route packets to the specified sink. The following paragraphs describe
the important aspects involved in this decision problem.
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Fitness: (for routing purposes) This parameter denotes the next hop neighbour nk to a node ni. A
neighbour nk is chosen based on its fitness (fk ε { good, bad }) in routing packets, calculated
using the fitness factors: residual-energy, distance and routing behaviour

Residual-Energy: f.ej ε {high, low} denotes the remaining energy in ni , to route packets. The
parameters in  (Heinzelman et al., 2000) was used to determine ni’s actual energy e(ni) and then
discretize it (to use standard POMDP solvers): f.ej = high, if e(nj) is greater than half its initial
value and low, otherwise.

Distance: Distance D(nj , sink) This parameter denotes the distance of nj from the sink. It is
determined by broadcasting HELLO (source, hopCount) messages, during the sink
announcement phase. Initially, (source = sink; hopCount = 0) is broadcast from the sink. The
neighbouring nodes of the sink receive this message and determine their distance by
incrementing hopCount by 1. The new hopCount is then re-broadcast to each node’s neighbours.
To discretize the distance values, for node nk , f.dk = near, if D(nk , sink) < D(ni, sink), else f.dk =
far.

Routing Behavior: This parameter is used to denote the various adversarial capabilities of a
node. Node nk can forward the packets sent to it i.e., f:rbk = forward, or drop packets f:rbk = drop,
exhibiting network based attacks [Karlof and Wagner, 2003], such as: (1) black-hole attack,
where node nk drops packets with probability pd=1, always; (2) on-off attack, where pd=1 only
during specific intervals of time, and pd=0 otherwise, etc.

Message Protocols: In order to determine the above fitness factors of fk , node ni can request
opinions (query action) about node nk from another neighbour nk’ using a QUERY (ni, nk’ , nk)
message . A REPLY (nk’ , ni,  nk , f.ek , f.dk ,  f.rbk) message is then sent by nk’  about the fitness
factors of nk . Node ni can also opt to route packets (route action) to nk , to determine its fitness
factors. Once ni routes packets to nk , nk sends an acknowledgement  ACK (nk , ni, f.ek , f.dk)
message, informing ni about its residual-energy and distance values. Node ni also employs a
watchdog mechanism (Marti S  et al., 2000) to peek nk’s transmission packets (RSSI) and
monitor its routing behaviour f.rbk , whether it actually forwards/or drops the sent packets. Thus,
the actual values of f.ek , f.dk and f.rbk can be determined by routing packets to nk. Node ni can
also send/receive ALARM (ni, nk , f.ek , f.dk , f.rbk) messages, carrying information about a
malicious node nk .

Unfair Ratings: This models neighbour nodes that send false reputation to a QUERY message.
In this scenario, node nk’ can be unfair by providing misleading opinions about nk . A variable rk’
is used to denote the trustworthiness of nk’ in its rating behaviour, when providing opinions
about other nodes. nk’ can be truthful (rk’ = true) or provide unfair ratings about nk , exhibiting
any of the following attacks (Jiang et al., 2013): (1) random (rk’ = rand), where nk’  randomly
provides fair and unfair ratings,  (2) adversarial (rk’ = adv), where nk’  always provides unfair
ratings,  (3) camouflage (rk’ = dec), where nk’  is honest in the beginning and provides unfair
ratings after γ packet transmissions, (4) collusive-unfair (rk’ = imp), where attackers form the
majority in the system and always promote their neighbours.
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Overall Goal: Given that ni can use query and route actions to determine the fitness factors of
its neighbours, there exists a tradeoff as querying information can lead to energy drain, while
routing through malicious nodes can lead to packet drop. To balance the tradeoff of information
gaining (query) actions and exploitation (route/alarm) actions, a Partially Observable Markov
Decision Process (POMDP) model is used, which selectively queries for information to select a
suitable next-hop neighbour to successfully route packets (and send alarms, if necessary),
thereby minimizing energy consumption and maximizing lifetime of the sensor nodes. The next
section gives a brief description of the SFROMS  model.

Figure 1: Secure Routing SFROMS (SRS) action hierarchy.

4   The SFROMS Model
A SFROMS can be described by the tuple (S, A, T, R, Ω, B): where:
Agent State (S):  is defined as , where Dp ⊆ D are the sinks the packets must

reach and is the routing information about all neighbouring nodes N with respect to

the individual sinks.
Actions (A): This represents a routing decision through a neighbour node to a desired sink. This
step is used to determine the sets of secured neighbour (route) to each sink from the sink
announcement phase in the network. It is calculated as the number of hops to a desired sink.
A = ∑ ℎ∈ − − − − − − −− − − − − − − − − − − − (1)
Where ℎ are the number of hops to reach destination d ε Di and | Di | is the number of
sinks in D.
Transition (T) : This specifies probabilities Pr(s’|s, a) i.e. the probability of transiting from state
s to s’ given that a certain action ‘a’ has occurred. It is based on the Partially Observable Markov
Decision Process (POMDP)  model.
P(s’|s, a) = ∑ ( ′ , ′). ( )∈ --------------------------------------------- (2)
Observation (O) :The agent also receives observations (o ε Ω ) based on the observation model
O, specifying the probabilities Pr(o|a, s’) i.e. the probability of observing a certain reward given
that the agent  performs an action ‘a’ having transited to s’.  The observation represents the
probability distribution of the states. It is given by:
P(o|a, s’) = ∑ ( ′). ( ′| , )∈ ------------------------------------------ (3)
Reward R(s, a, s’) : the reward that an action ‘a’ causes transition from s to s’. An infinite
horizon problem is assumed . It is given by:

Routing SFROMS (RF)

idle donR route ∼eval

alarmSFROMS (AF)

∼evalj process sendj idle

Fitness SFROMS (FF)

idle Askjj’ Report good’
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R(s, a, s’) = ∑ ( , ). ( )∈ -------------------------------------------------- (4)
Where r(s, a) = + ( ))     and b(s)  =  P(s)
Here is the action’s cost (always 1 in the hop count metric) and ( ) is the lowest (best)
Q-value from the fit neighbours), b(s) is the probability distribution among the neighbour nodes..
Belief (B): This is a probability distribution over states via Bayes’ rule. If b(s) specifies the
probability of s (∀ s), the updated belief b’ after taking action a and receiving observation o is
given by,

′( ′) = ( ′, | , )( | , ) = ( | , ′)( | , ) ∑ Pr( ′ , ) ( ) (5)

A SFROMS policy maps beliefs to actions and is associated with a value function Π (b) which
evaluates the expected total reward of executing policy Π starting from b. The objective of a
SFROMS agent is to find an optimal SFROMS policy Π, which maximizes the expected total
reward. Normally, the routing problem in WSNs is too large to be modeled as a single POMDP
(finding the optimal policy is intractable, PSPACE complete).  I therefore propose an
hierarchical approach, consisting of Routing, Fitness and the Alarm subfunction.
.
5    Secure SFROMS (SS)
From the secured model proposed in section 4, a large state space will be required to model
parameters needed in the network. This will result in an infinite convergence time for the
protocol. In order to address this situation, a hierarchical formulation is proposed here (as shown
in Fig 1). This is achieved as follows:  Anytime data packet is to be routed from a particular
source node, to the sink the Routing SFROMS sub-function is activated. The Routing SFROMS
sub-function  then calls the Integrity sub-function. The integrity sub-function determines the
fitness of a neighbour node using the following parameter: (i) distance of the neighbour to the
sink, (ii) Percentage of the full energy remaining in the neighbour node, (iii) the integrity of the
neighbour node. In order for this to function appropriately, a danger sub-function may be
activated when it is realized that a neighbour node is not fit to route data. The identity of such
node is stored in the sub-function so that data packet will not be routed through the node in
subsequent time.

5.1 Routing SFROMS (RS)
The aim of the Secure Routing SFROMS sub-function is to determine a neighbour node to route
data through. First it must be noted that a node in the network is expected to have more than one
immediate neighbour.  At the same time, due to the nature of the network, not all the neighbour
to a particular node is expected to have a high integrity value. The POMDP model helps build a
belief about the neighbour to a node.  The ~compk variable is used to determine the integrity of a
neighbour node.  (nk) i.e., fk = fit(f), if nk is an honest node and will not drop data packet. and fk

= unfit(u), if nk is is not honest and will not successfully route data to the destination. The avoid
sub-function is activated when there are no fit neighbour nodes to route data packet, in other
words the data packet is stuck and may have to be sent back to its previous node so that other
alternative route will be sought. The use of the ∼compk function denotes an effort in the protocol
and hence the cost of performing this function is denoted by a negative reward of C(f’k = u.path)
if the neighbour node is an not honest node, while a positive reward of C(f’k = f.path) is
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provided if the neighbour node is a honest one. The action-space hierarchy for SRS is shown in
Fig. 2).

Figure 2: SS: (a) DBN for ∼eval1 action; (b) (Partial) Policy.

An example of the ∼compk action is now explained for a node that has two neighbours, i.e. here,
a decision will be made to route data among the two alternatives. Initially equal observation is
given to different combination possible under this scenario. This includes: (i) the first and the
second neighbour leads to good nodes, this is denote as ff, (ii) the first neighbour is a good node,
but the second neighbour is a bad node. This is denoted as fu (iii) the first neighbour is a bad
node while the second neighbour is a good node. This is denoted as uf and (iv) the first and
second neighbours are bad nodes. This is denoted as uu. The transition and observation
probabilities for the ∼compk=1 action is shown in Fig.2a). In order to describe this operation, the
four different combinations possible from the permutation of the actions are initially assigned the
value 0.25. However after the Q-learning model is applied and the nodes perform the actual
transition for the cases involved, the actual observation probability is then obtained and it is
shown in fig 2. This is explained as follows: after the ∼compk sub-function is activated actions
uu has observation probability of 0.05, fu has observation probability of 0.02, ff has observation
probability of 0.45, and uf has observation probability of 0.05. These are the assumed probability
given in each case and it served well for the simulation experiments shown in section 6.
Table 1: The SFROMS ∼compk function table.
SFROMS States Observation Action Reward

Routing Fk ε {f,u} Ofit ε {f,u} ∼compk

pathj

avoid

lazy

C(∼compk) = -20

C(fk’=f,pathk) = 200

C(fk’=u,path) = -200

C(lazy) = -5

Danger Fk ε {f,u}

Dangersent ε

Ofit ε {f,u} ∼compk C(∼compk) = -15

C(f’sent=f/u,calculate)=100/
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{1…….m}

Dangerreceived ε
{1…….m}

DangerDSentjε {T,F}

Orec ε {1…….m}

Orand ε {1……m}

Otrans ε {1…….m}

Calculate

transj

lazy

-200

C(f’j = u/f,trans = 100/-200

C(lazy) = -5

Integrity f.ek ε {good, bad}

f.dk ε {close, nclose}

f.rbj ε {transmit, no
transmit}

tj ε {good,,prob,
imp.idle

imp.on}

Tpower ε {good,
bad}

Tsept ε {close,
nclose}

Trb ε {transmit, no
transmit}

Tr ε {good, bad}

Seekjj’

Send_fit

Send_unf
it

C(seekjj’) = 20

C(f’mod = f,sendfit) = 200

C(fmode = u,sendunfit) = -
300

C(f’mod = u,sendunfit) = 200

C(f’mod = f,sendunfit) = -300

C(lazy) = -5

prob = random, imp = collusive unfair, dec = camouflag,

5.2 Alarm FROMS (AS)
This sub-function is responsible for triggering the danger signal when a neighbour node is an
adversarial node. In other words it is not an honest node. This scenario can happen in two ways:
(i) when a node routes to a neighbour node and fails to get an acknowledgement from it. This
will translate to either the data packets got lost in transit or the neighbour node is not honest. In
this case the Alarm sub-function may or may not be triggered. (ii) When a node seek the integrity
of a neighbour node from other nodes in the network. The cumulative rating or belief offered by
the other nodes may necessitate activating the Alarm sub-function. In the first instance a
provision is made in the protocol to resend the data packet in case it got lost in transit, however if
an acknowledgement control packet is not still received, then the Alarm sub-function is
activated, and the node is stored as an adversarial node, while further data packet will not be
routed through it. In the second case if most of the other nodes which control data packet is sent
to determine the integrity of a node replies with negative rating for the node, then the Alarms
SFROMS sub-function is activated.

5.3 Fitness SFROMS (FS)
The purpose of this sub-function is to determine the integrity of a neighbour node. The sub-
function uses the following parameters to determine the integrity of a node, (i) the neighbour’s
node distance from the sinks. This is done as follows if the neighbour nodes distance to the sink
is farther than that of the requesting node, then the node is unfit otherwise the node is fit. (ii)
Percentage of the full energy of the node remaining. This is done as follows if the percentage of
the full energy remaining in the neighbour node is more than 60%, then the node is fit, otherwise
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it is unfit (iii) Node characteristics, this are adversarial behaviour of a neighbour node that makes
it to always drop or seldom drop data packets routed through it.. The other use of this sub-
function is to identify nodes that give false recommendation about other nodes in the network.
This is performed by the rating procedure rk. When the ∼compk sub-function is activated it
assigns probability to the different types of false recommendation that can be received from other
nodes in the network. This includes (i) good recommendation, which shows that a neighbour
node is good and fit to route data, (ii) probabilistic recommendation, which shows that a
neighbour node may or may not route data packet sent to it, (iii) collusive unfair node
recommendation, this shows that an adversarial node has many other sub-nodes which depend on
it, routing through such a node will forward data to its sub-nodes which will lead to a condition
referred to as face routing. Here a data packet routed through a node will be involved in a high
latency path to the destination, such that it leads to short network life times.
Equations 6 – 8 below show the conditional probability for the rating sub-function., In the
equation, Ngood denotes what constitutes a honest node. i.e., number of times f.ek=good,
f.dk=close, f.se1=send while Nbad denotes what constitutes adversarial nodes i.e., number of times
f.ek= no good, f.dk=no close, f.se1=no send.
b0(s) = b0(f1|f.e1,f.d1,frb1) b

0(f.d1) b
0(f.rb1) ------------- (6)

b0(f1 = g | f.e1,f.d1,frb1) = (7)

b0(f1 = b | f.e1,f.d1,frb1) = (8)

The belief updating process in FS follows a similar approach as that of RS (shown in Fig. 3(b)).

5.4    Parallel Belief Update
The belief update takes place separately for RS, AS and FS. For a routing task, RS and FS are
active i.e., when RS takes the ∼evalk action, FS is called and based on the reportGood/reportBad
action of FS, observation good/bad is received by RS. However, in this case the beliefs about nk

are updated only in RS and left outdated in AS. In order to update the knowledge about nk in AS,
the idle action (in each SFROMS hierarchy) is introduced. Whenever the _evalj action is called
in RS and beliefs are updated about nk , the idle action of AS is also called to update the beliefs
on nj . Similarly, when ∼evalj action is called by AS, idle action is taken in RS. This idle action
gives an update in AS. Whenever the actual fitness factors i.e., f.ek , f:dk and f.rbk of nk are
determined after the routing process (as described in Sec. 3), the idle action is taken by FS to
update the beliefs about nk , resulting in reportGood/reportBad action. Based on these actions,
the idle actions of both the RP and AP are taken, to update the beliefs about nk .

6    Performance Evaluation
Experiments were conducted in a simulated environment  as well as on hardware test-bed to
compare the performance of SRS with RFSN [Ganeriwal et al., 2008], CONFIDANT
[Buchegger and Le Boudec, 2002] and (Nurmi, 2007). To show the usefulness of AS, the results
of SRS with and without AS was compared. It is denoted by SRS and SRS-NAS, respectively.
To verify the usefulness of the hierarchical structure, SRS was implemented without any
hierarchy, but the method failed to find a reasonable solution (due to the large state/action
space), thus not shown in the results. The metrics used for characterizing the WSN security are:
the average Packet Delivery Ratio (PDR) i.e, ratio of data packets successfully delivered to the
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sink and Residual Energy (RE) i.e., average (remaining) energy of each sensor node in the
network.

In order to learn the observation probabilities for ∼evalk action of RS (AS) based on the
policy of FS (for which the probabilities were manually specified). Using (offline) simulations,
the protocol was run and 400 actions of RS (AS) which invoke FS were randomly selected. The
number of instances where FS correctly identifies a node’s quality was measured. The
probability of receiving a correct/incorrect observation for ∼evalk action was 0.86/0.14,
respectively.

For simulation, the MATLAB Simulator [Barr et al., 2005] was used. The topology
includes 100 stationary nodes, uniformly randomly distributed within a 1000m X 1000m square,
with the sinks at its right end. The transmission radius is 100m and M=5 (i.e. number of
neighbours). Each node generates packets at the rate λ=1 per time step. The size of each data
packet is 512 bytes, HELLO packet is 60 bytes, QUERY, ALARM and ACK packet is 125
bytes. The initial energy of each sensor node is 2J. The radio dissipates 50 nJ / bit to run the
transmitter/receiver circuitry and 100 pJ / bit for the transmitter amplifier. 20% of the nodes were
assumed to be compromised. The experiments are run for 100 time steps, transmitting over
10,000 data packets. Fig. 4(a-h) show the PDR and residual-energy of the routing schemes under
different attacking scenarios. In Fig. 3(a), under black-hole attack, SRS and SRS-NAS achieve
the highest PDR (97% after 100 time steps). SRS performs slightly better than SRS-NAS,
especially in the beginning, as it identifies malicious nodes earlier by propagating alarms. SRP,
SRP-NAE, RFSN, CONFIDANT use both direct evaluation and recommendations, while Nurmi
uses only direct evaluation,  one of the reasons for its low PDR (73%), apart from the limitation
of using gradient techniques for computing policy. In Fig. 3(b), SRP obtains a lower residual-
energy than SRP-NAE, as SRP additionally sends alarms. RFSN queries all neighbors and
CONFIDANT relentlessly sends alarms about malicious nodes, obtaining a lower residual
energy. Nurmi does not query other nodes, obtaining a high residual-energy. Fig. 3(c-d) show
similar results, where on-off attackers drop packets every 5 time steps.

In Fig. 3(e-h), the 20% compromised nodes (black-hole attackers) also target the trust
system by providing unfair ratings (showing random, collusive-unfair behavior). SRP and SRP-
NAE can effectively identify unfair raters as they model such behaviours as a part of their
POMDP states. In Fig. 3(e-f), under random attack, SRP, SRP-NAE achieve high performance.
In Fig. 3(g-h), under collusive-unfair attack, unfair raters are increased to 60%, forming the
majority. SRP (PDR 96%) performs better than SRP-NAE as it easily identifies attackers by
propagating alarms, while SRP-NAE (PDR 93%) initially obtains misleading opinions from the
colluders, thereby routing through malicious nodes, until their actual behaviour is identified after
routing. Further Fig. 3(a-h) also show that AE indeed improves the performance of SRP (PDR of
SRP is always greater than SRP-NAE, though AE involves additional energy drain, in some
cases). Fig. 3(i-l) show the results (under collusive-unfair attack5), when network environment
changes. SRP performs better under uniform load (λ=1 per node) as well as under non-uniform
load (λ ε [0, 1] is selected randomly per node). Also, PDR of all schemes increase with the
number of nodes, as probability of finding a more reliable route to sink increases.
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Figure 3: Performance in simulated environment in terms of Packet Delivery Ratio (PDR) and
Residual-Energy (RE): (a-h) different attacking scenarios; (i-l) different load characteristics.

Since most probabilities in SRS are manually specified (e.g., random nodes provide
unfair ratings with probability pu=50%), we analyze the robustness of SRS to the specification of
such values when the actual behaviours of random nodes change: 1) SRP-60, where pu=60%
instead of 50% (as assumed in FE); 2) SRP-40, where pu=40%; 3) SRP-50 for perfectly random
nodes with pu=50%.

In order to validate the secured routing protocol, in a real-world test-bed, the performance
of SFROMS was compared with RFSN, CONFIDANT and Nurmi. The experimental setup
consists of arduino-uno (microcontroller), programmable xbees (radio transceiver) and LM 35
temperature sensor (sensing device) the combination of arduino uno xbee and LM 35
temperature sensor acts as the end device while the combination of the arduino uno and xbees
acts as the router and co-ordinator nodes. The results of SFROMS were compared with and
without AS denoted by SFROMS and SFROMS-NAS, respectively. Two performance metrics
were used for comparison: The average Packet Delivery Ratio (PDR) i.e, the ratio of data
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packets successfully delivered to the sink together with Residual-Energy (RE) i.e., average
(remaining) energy of each sensor node in the network

Figure 4 : Graph on the Collusive unfair  adversarial nodes (Hardware Test-bed)

7    Conclusion and Future Work
The Secure Routing SFROMS (SRS) approach is presented in this paper, to select suitable next-
hop neighbours and successfully route packets to the sink. It is a subset of the protocol to route to
multiple mobile sinks. SRS can deal with black-hole, on-off attacks, etc., and attacks targeting
the trust system. It balances the exploration/exploitation tradeoff in gaining/exploiting
information about sensor nodes, thereby effectively addressing their energy constraints. SRS is
modeled using hierarchical and factored representations to address the complexity in solving
POMDPs. Experiments show that SRS consistently achieves higher packet delivery rates by
coping with various attacks, while still maintaining high residual energy. Hence it guarantees
reliable, energy-efficient routing in WSNs, which are key factors in sustainable development.
While it has been established that SRS is robust against the choice of parameters for transition
and observation models, an interesting direction of future work is to automatically optimize
these. Attempt will be made in future to investigate using finite-state controllers, which can be
more energy-efficient (Grze´s et al., 2013).
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