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Abstract: The focus of this study is to show the application of residue calculus of second order linear
Homogeneous differential equations. Cauchy method was introduced to solve second order linear
homogeneous differential equation. In comparing the method of finding the Cauchy’s method for solving
ordinary second order homogeneous differential and the order method both result are the same. The
Cauchy’s residue method is more direct, precisely, efficient, and time-saving.  The result obtained shows
that it has no complex solution. However both result are real and have their applications in electrical and
mechanical engineering systems. Electrical application can be used in an electrical circuit such as
Resistor, inductor and capacitor and the Mechanical can be used to describe acceleration, velocity and
displacement. In short, the result has application in the field of engineering particularly Electrical and
mechanical engineering.
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1. INTRODUCTION

In complex analysis, a field in mathematics, the residue theorem, sometimes called Cauchy’s
residue theorem(one of many things named after Augustin-Louis Cauchy), is a powerful tool to
evaluate line integral of analytic function over closed curves; it can be used to compute real
integral as well. It generalizes the Cauchy integral theorem and Cauchy’s integral formula. From
a geometrical perspective, it is a special case of the generalised stokes theorem. The analytical
evaluation of a general contour integral with integral f(z) depends for its success on what are
called the residue at the poles of f(z).The residue of a function f(z) at a pole of defined in terms
of a special series expansion of f(z) about  the pole called a Laurent  series. The Laurent series
represents an extension of the conventional Taylor series that is no longer applicable
expansion of f (z) is required about a singular point. Various ways of obtaining Laurent   series
are described, and it is shown how a contour integral is related to the residue of the integrant f
(z) that lie either inside or on the contour of integration different types of contour integral are
evaluated and integration around a branch point of f(z) is considered. The mathematical field of
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complex analysis, contour integration is a method of evaluating certain integrals along path in
the complex plane. Contour integration is closely related to calculus of residues a methodology
of complex analysis. One use for contour integrals is the evaluation of integral along the real
line that is not readily found by the using only real variable methods.

This work shows the application of residue calculus on second order homogeneous
differential equation. Residue calculus is one of the most important notions of mathematics
which find it application in all fields, especially in science and technology. The objective of this
paper is to introduce Cauchy method for solving linear second order homogeneous differential
equations with constant coefficients and its applications.

2. LITERATURE

An equation of the form where P and Q are function of x, is said to be
homogeneous differential equation, if it is not equal to zero is said to be non-homogeneous
differential equation.  Second order differential equations are classical methods which have
wide area of applications in the field of science and technology. Especially in Engineering
discipline. Generally, the differential equation may be ordinary or partial differential equation.
[5]

Proposed was used On-chip Tunable second order differential equation solver Base on a
silicon Photonic Mode-split micro-resonator with Tunable coefficients and system
demonstration using the fabricated device is carried out for 10-Gb/s Gaussian and supper
Gaussian in put pulse. The experimental results are in good agreement with theoretical
prediction of the solution. [9]

Physics laws are generally written in the form of differential equations, science and
technology are use differential equation the main concerned of differential equations are one
the most important part of language of science and technology. [6]

Application of differential transform method for solving differential and integral
equations was used to apply in area of Engineering and science using differential transform
method was employed to solve Volterra integral equation of second kind. Taylor series
polynomial or expansion was also used to construct analytical approximate solution of initial
value problem. Differential transform method has been successfully use for finding solution of
non-linear system of volterra integral equation and its powerful tools technique for obtained
exact solution.[10]

Second order differential equation arises for the charges on a capacitor in unpowered
RLC electrical circuit or freely oscillating frictional mass on a spring or for a damping pendulum.

Application of second differential equation was recently discuss [7], in the context,
Schrödinger equation were discuss and condition under which the confluent, biconfluent and
the generally, exact solution are transcendental functions and was a recursive ring and the
Schrödinger equation where is extremely use full to have at one’s disposal some. Application of
the results to Schrödinger’s equation was discussed and conditions under which the confluent,
biconfluent, and the general Heun equation yield polynomial solution are explicitly given. [1]
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Determining dynamic market Equilibrium price function was used to obtained the equilibrium
price function over in dynamic market, by observing the price changes and changes in the level
of rising prices. Second order non-homogeneous differential equation was used to determining
Dynamic market Equilibrium price functions over a time by considering the price change and
change in the level of rising price. [8]

Most of the cited literature they did not apply the method of Cauchy to solve second
order ordinary differential equation, in other to solve the second order homogeneous
differential equation. But they applied various methods to solve it.

3. PROCEDURE

GENERAL SOLUTION OF ORDINARY DIFFERENTIONAL EQAUTIONS

Here we introduce Cauchy’s method for solving ordinary differential equations using
residue. Specially, we will find the general solution for linear homogeneous   differential
equations with constant coefficients

(1)

Where are given constant s.

Theorem 1

Consider the differential equations with constant coefficients.

(2)

Let f be an arbitrary function of the complex variable z, whose zeros do not coincide
with the zeros of the polynomial

(3)

Then the general solution of (4.2.2) is given by

(4)

We now show that (4) is a solution of the homogeneous differential equation (2). We assume
that

0'1
1

10 =+−++−+ ynayna
n

ya
n

ya 

,3,2,1,'10 == jaanda s
j

0'1
1

1 =+−++−+ ynayna
n

ya
n

y 

( ) nazna
n

za
n

za
n

zzg +−++−+−+= 1
2

2
1

1 

( ) ( )
( )∑= 








zg

zx
exf

resxy

mailto:journals@arcnjournals.org


International Journal of Pure & Applied Science Research

journals@arcnjournals.org 14 | P a g e

Then

(k   =1, 2,3…n)

Hence

(5)

Since f(z) is analytic. Thus, (4) is indeed a solution of (2), i.e. (4) is a general solution

4. RESULT

Problem 3.1: - The case of distinct real roots. We want to find the general solution of the
differential equations

Let f(z) be any arbitrary entire function whose zero are 3 and 4
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Let . Then

Clearly the zeros of f (z) do not coincide with the zero of g(z). We know the general solution is
given by

By   (4)

Where the summation is take over z = 3 and z = 4. So we have

Let

Hence the general solution of differential equation is

Problem 3.2: - the case of repeated real roots. It is our objective to find the general solution of
the differential equations.

Let f(z) be an arbitrary entire function whose zero’s do not include 3, and let

Then

The general solution is given by

Then we have
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Thus, we have obtain the general solution,

Problem 3.3

The equation

Represent a current i flowing in an electrical circuit containing resistance R and inductance L and

capacitance C connected in series. If R = 200 ohms, L = 0.20 henry and , solve the

equation for i given the boundary conditions that when t = 0, i = 0 and

Solution
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Of order 2

Res (-500)

When t =0 , i = 0 and  c = 0

Problem 3.4

is an equation representing current i in an electrical circuit. If inductance L is 0.25

henry, capacitances C is farads and R is 250 ohms, solve the equation for i given the

boundary condition that when t = 0, i = 0 and

Solution
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Res (-160) + Res (-840)
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Problem 3.5

The displacement s of a body in a damped mechanical system, with no external forces satisfies
the following differential equation

Where t represent time, it initially condition, when t = 0 , s = 0 and solve differential

equation of S  in terms of t.

Solution
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Res (-3) of order 2

When t = 0 and s =0 then c2 = 0

5. CONCLUSION AND RECOMMENDATION

In comparing the method of finding the Cauchy’s method for solving ordinary second order
homogeneous differential and the order method both result are the same. The Cauchy’s
residue method is more direct, precisely, efficient, and time-saving.  The result obtained shows
that it has no complex solution. However both result are real and have their applications in
electrical and mechanical engineering systems. Electrical application can be used in an electrical
circuit such as Resistor, inductor and capacitor and the Mechanical can be used to describe
acceleration, velocity and displacement. In short, the result have application in the field of
engineering particularly Electrical and mechanical engineering.

It has been recommended that the method should be applied in solving problems in
engineering and other related fields.
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