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Abstract: This paper examined the behaviours of two frequentist regression methods (the ridge regression
and ordinary least squares (OLS)) and Bayesian linear regression method on data with inherent collinear
structure. Data sets with reasonable degrees of multicollinearity at some selected sample sizes were
simulated. The three regression types were fitted to various data and the performances of both the ridge
and OLS estimators were compared with that of the Bayesian linear regression estimators using Normal-
Gamma conjugate prior. The goal is to examine the relative efficiency of the Bayesian estimator, which
integrates some prior information with the information available in the data in its regression estimation,
over the two frequentist regression techniques. Results from Monte Carlo studies established the
supremacy of the Bayesian estimators over both the OLS and the ridge estimators. Although, the ridge
regression estimators expectedly performs better than the OLS estimators given the degree of
multicollinearity in the simulated data, the results generally showed that Bayesian linear regression
estimator is relatively more efficient (with smaller mean square errors) than the two frequentist
regression techniques given the same data structure.
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1.0 Introduction
In statistical inference, there are two broad categories of interpretations of probability:

Bayesian inference (Byron Hall, STATISTICAT, LLC, Bayesian Inference Article p. 1-2) and
frequentist inference (Byron Hall, STATISTICAT, LLC, and Bayesian Inference Article). These
views often differ with each other on the fundamental nature of probability. Frequentist
inference loosely defines probability as the limit of an event's relative frequency in a large
number of trials, and only in the context of experiments that are random and well-defined.
Bayesian inference, on the other hand, is able to assign probabilities to any statement, even
when a random process is not involved. In Bayesian inference, probability is a way to represent
an individual's degree of belief in a statement, or given evidence. Within Bayesian inference,
there are also different interpretations of probability, and different approaches evolved based
on those interpretations. The most popular interpretations and approaches are objective
Bayesian inference (Berger 2006) and subjective Bayesian inference (Anscombe and Aumann
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1963; Bernardo 2008). Objective Bayesian inference is often associated with Bayes and Price
(1763), Laplace (1814), and Roberts (2007). Subjective Bayesian inference is often associated
with Ramsey (1926), Simon, (2009), and Bernardo and Smith, (2000).
1.1 Bayes' Theorem

Bayes' theorem shows the relation between two conditional probabilities that are the
reverse of each other. This theorem is named after Reverend Thomas Bayes (1702-1761), and is
also referred to as Bayes' law or Bayes' rule (Bayes and Price 1763). Bayes' theorem expresses
the conditional probability, or `posterior probability', of an event A after B is observed in terms
of the ‘prior probability’ of A, prior probability of B, and the conditional probability of B given A.
Bayes' theorem is valid in all common interpretations of probability.
When no data are available, a prior distribution is used to quantify our knowledge about the
parameter. When data are available, we can update our prior knowledge using the conditional
distribution of parameters, given the data. The transition from the prior to the posterior is
possible via the Bayes theorem. Suppose that before the experiment our prior distribution
describing Aisπ (A): The data are coming from the assumed model (likelihood) which depends
on the parameter and is denoted by f(x/A).Bayes theorem updates the prior, ( ) to the
posterior by accounting for the data x through the relationship.( / ) = ( / ) ( )( ) (1.1)

Where m(x) is a normalizing constant, m(x) =∫ ( / ) ( ) (1.2)

Once the data x are available, A is the only unknown quantity and the posterior
distribution π(A/x) completely describes the uncertainty. There are two key advantages of
Bayesian paradigm: (i) once the uncertainty is expressed via the probability distribution and the
statistical inference can be automated, it follows a conceptually simple recipe, and (ii) available
prior information is coherently incorporated into the statistical model.
1.2 Bayesian Linear Regression

In statistics, Bayesian linear regression is an approach to linear regression in which the
statistical analysis is undertaken within the context of Bayesian inference. When the regression
model has errors that have a normal distribution, and if a particular form of prior distribution is
assumed, explicit results are available for the posterior probability distributions of the model's
parameters. Consider a standard linear regression problem, in which for = 1,… , we specify
the conditional distribution of given a 1×k predictor vector := + (1.3)

where is ak×1 vector of regression parameters to be estimated, and the is independent and
identically-distributed and normally distributed random  error of the model with ~ (0, ).
From the regression model in (1.2), the following likelihood function is developed within the
Bayesian concept:( | , , ) ∝ ( ) − ( ) ( − ) ( − ) (1.4)
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The ordinary least squares solution is to estimate the coefficient vector using the Moore-
Penrose pseudo-inverse:= ( ) ( ) (1.5)

Where X is the n×k design matrix of predictor variables, each row of which is a predictor
vector ; and yis the column n-vector( ,… , ) .
This is a frequentist approach, and it assumes that there are enough measurements (samples)
to say something meaningful about . In the Bayesian approach, the data are supplemented
with additional information in the form of a prior probability distribution. The prior belief about
the parameters is combined with the data's likelihood function according to Bayes theorem to
yield the posterior belief about the parameters and . The prior can take different functional
forms depending on the domain and the information that is available a priori.
2.1     Linear Regression Model

The linear regression model is use to study the relationship between a dependent
variable and one or more independently variables. The generic form of the linear regression
model is= ( , , . . . , ) + (2.1)= + + + . . . + + (2.2)

Where y is the dependent variable or explained variable and , … , are the independent or
explanatory variables. The function ( , … , ) is commonly called population regression
equation of y on , … , . In this setting, y is the regress and , k=1 … K, are the regressors or
covariates. The term is a random disturbance so named because it “disturbs” an otherwise
stable relationship. (Greene, 2000)
2.1.2   Normal Linear Regression Model

The above equation can be expressed in matrix form as a normal linear regression
model and thus the model is given as:= + (2.3)

Where = ( ,… , ) , = ( ,… , ) and assuming initially that ~ (0, )
The addition of the assumption of normality of leads to normal linear regression model.
(Gujarati (2004).
2.1.3   Linear Regression Model in Matrixnotation
Suppose we have data on a dependent variable, , and k explanatory variables , … , for= 1,… , . The linear regression model is given by:= + +⋯+ + (2.4)
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The above notation is such that is implicitly set to 1 to allow for an intercept. This model can
be written more compactly in matrix notation by defining the × 1 vectors:

= ⎣⎢⎢
⎢⎢⎡ ... ⎦⎥⎥
⎥⎥⎤

and

= ⎣⎢⎢
⎢⎢⎡ ... ⎦⎥⎥
⎥⎥⎤

the × 11

=β_1β_2...β_k
and the × matrix

=
⎣⎢⎢
⎢⎢⎢
⎡11....1
....
.......

.......

.......
.... ⎦⎥⎥
⎥⎥⎥
⎤

And writing= + (2.5)

Using the definition of matrix multiplication it can be verified that (2) is equivalent to the n
equations defined by (1) (Koop. 2003),

3.0 Methodology
3.1 Bayesian Method

The paper presents the posterior distribution of the Bayesian normal linear regression,
properties of the parameters of interest with respect to their credible intervals and highest
posterior densities.
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3.1.1   The Posterior Distribution of Bayesian Normal Linear Regression
The posterior distribution ( , ℎ| ) defined as:( , ℎ| ) ∝ ( , ℎ) × ( | , ℎ) (3.1)

Where ( , ℎ) = |∑ | ( − ) (∑ ) ( − ) + (3.2)

And( | , ℎ) = ( ) ( + ( − ) ( )( − )) (3.3)

Thus ( , ℎ| ) ∝ ℎ2 |∑ | −ℎ2 ( − ) (∑ ) ( − ) + ×
ℎ(2 ) −ℎ2 ( + ( − ) ( )( − )) (3.4)

Let = ( ) |∑ |
Then( , ℎ| )∝ ℎ ( − ) (∑ ) ( − ) + + + ( − ) ( )( − ) (3.5)

Expanding the terms within the exponent bracket, we have:( − ) (∑ ) ( − ) + ( − ) ( )( − ) = (3.6)(∑ ) − (∑ ) − (∑ ) + (∑ ) + ( ) − ( ) −( ) + ( ) = (3.7)[(∑ ) + ] - [(∑ ) + ( ) ]- (∑ ) + ( ) + (∑ ) +( ) = (3.8)

If we let∗ = ∑∗(∑ + )∑∗ = (∑ + )(∑∗) − (∑∗) ∑∗[(∑ ) + ( ) ] − (∑∗) ∑∗ (∑ ) + ( )+ (∑ ) + ( ) =(∑∗) − (∑∗) ∗ − ∗ (∑∗) + (∑ ) + ( )
Simplifying further:
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(∑∗) − (∑∗) ∗ − ∗ (∑∗) + (∑ ) + ( ) =(∑∗) − (∑∗) ∗ − ∗ (∑∗) ∗ + ∗ (∑∗) ∗ − ∗ (∑∗) + (∑ )+ ( ) =( − ∗) (∑∗) ( − ∗) − ∗ (∑∗) + (∑ ) + ( ) (3.9)The last three
terms can be further combined to yield:(∑ ) + ( ) − ∗ (∑∗) = ( − ) ∑ + ( ) ( − ) (3.10)
Thus the posterior can be written as:( , ℎ| )∝ ℎ −ℎ2 ( − ∗) (∑∗) ( − ∗) + ++ ( − ) ∑ + ( ) ( − ) =∝ ℎ −ℎ2 (( − ∗) (∑∗) ( − ∗))∗ −ℎ2 + + ( − ) ∑ + ( ) ( − )
∝ ℎ (( − ∗) (∑∗) ( − ∗)) ∗ ℎ ∗ ∗∗ (3.12)
The above is indeed the kernel of a Normal-gamma distribution.
Therefore, ℎ| ~ ∗, ∑ ∗ , ∗, ∗ (3.13)
Where∗ = ∑∗(∑ + ) (3.14)∑∗ = (∑ + ) (3.15)∗ = + (3.16)∗ = ∗( ) (∑ ( ) ) ( )(3.17)∗ ∗ = + + ( − ) (∑ + ( ) ) ( − ) (3.18)

3.1.2   Properties of the posterior parameters
3.1.2.1   Marginal distribution of
In this setting h is not of immediate interest and is therefore considered as nuisance parameter.
It follows that h has to be integrated out to get the marginal distribution of ∗:( | ) = ∫ ( , ℎ| ) (ℎ) (3.19)= 1(2 ) |∑ | ℎ −ℎ2 ( − ∗) (∑∗) ( − ∗) + +

+ ( − ) ∑ + ( ) ( − ) ℎ
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= 1(2 ) |∑ | ℎ −ℎ2 ( − ∗) (∑∗) ( − ∗) + +
+ ( − ) ∑ + ( ) ( − ) ℎ= ( ) |∑ | ∫ ℎ ∗ (( − ∗) (∑∗) ( − ∗) + ∗ ∗) ℎ

(3.20)
Using integration by substitution

Let = ( ∗) (∑∗) ( ∗) ∗ ∗
then

ℎ = ( − ∗) (∑∗) ( − ∗) + ∗ ∗2
Therefore:= { (− )} 2( − ∗) (∑∗) ( − ∗) + ∗ ∗

∗ 2( − ∗) (∑∗) ( − ∗) + ∗ ∗
= 2( − ∗) (∑∗) ( − ∗) + ∗ ∗

∗ ∗ { (− )}
Recall from gamma function that ∗ { (− )} = ∗
Thus= 2( − ∗) (∑∗) ( − ∗) + ∗ ∗

∗
∗

= ∗
( ) |∑ | ( ∗) (∑∗) ( ∗) ∗ ∗ ∗

(3.21)

Hence ( | )follows the multivariate t-distribution defines as follows:( | )~ ( ∗, ∗∑∗, ∗) (3.22)( ) = ∗ (3.23)( ) = ∗ ∗∗ ∑∗ (3.24)

3.1.2.2   Marginal distribution of
To derive the marginal posterior density for h, we can use the “reversed” version of bayes rule:(ℎ| ) = ( , | )( | , ) (3.25)

The above follow from the definition of a Normal-gamma distribution, which is a product of a
conditional Normal distribution, and gamma distribution.
From the posterior definition:
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, ℎ| ~ ( ∗, ∑∗, ∗, ∗)
One can easily define the conditional normal distribution of as:|ℎ, ~ ( ∗, ℎ ∑∗) (3.26)

Therefore( |ℎ, ) ∝ ℎ (( − ∗) (∑∗) ( − ∗)) (3.27)
Thus (ℎ| )∝ ℎ ∗ −ℎ2 (( − ∗) (∑∗) ( − ∗) + ∗ ∗)∗ −ℎ2 (( − ∗) (∑∗) ( − ∗))∝ ℎ −ℎ2 (( − ∗) (∑∗) ( − ∗)) ∗ ℎ ∗ −ℎ ∗2 ∗∗ ℎ −ℎ2 (( − ∗) (∑∗) ( − ∗))(ℎ| ) ∝ ℎ ∗ ∗∗ (3.28)

Hence ℎ follows a Gamma distribution define asℎ| ~ ( ∗, ∗) (3.29)(ℎ) = ∗ (3.30)(ℎ| ) = ( ∗)∗ (3.31)
The above definition follows from gamma distribution with parameters ∗ degree of freedom
and mean ∗.
3.1.2.3    Interpretation of the Estimators

β is now the posterior mean for , which is the Bayesian  estimator for the unknown
regression coefficient and thus interpreted as the weighted average of the prior mean and
OLS estimator where the weight reflect the strength of information by prior(∑ ) and data

. The latter of these reflects the confidence in the prior. For instance, if the prior variance
selected is high, that implies we are very uncertain about what likely values of are. As a
result, (∑ ) will be small and little weight will be attached to ; the best prior guess at what

is. The term plays a similar role with respect to databased information. Loosely speaking,
it reflects the degree of confidence that the data have in its best guess for ; the OLS
estimate . According to frequentist econometrics, we recognize( ) as being
proportional to the variance of .Note that, for both prior mean and the OLS estimate, the
posterior mean attaches weight proportional to their precisions (i.e. the inverse of their
variances). Hence, Bayesian methods combine data and prior information in a sensible way.
In frequentist econometrics, the variance of the OLS estimator for the regression model given in
(2.9) is ( ) . The Bayesian analogue is the posterior variance of given in (3.24), which
has a very similar form, but incorporates both prior and data information. For instance, (3.14)
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can be informally interpreted as saying “posterior precision is an average of prior precision(∑ ) and data precision . Similarly, (3.18) has an intuitive interpretation of posterior sum
of squared errors ( ∗ ∗) is the sum of prior sum of squared errors ( ), OLS sum of squared
errors ( ), and a term which measures the conflictbetween prior and data information”.

The other equations above also emphasize the intuition that the Bayesian posterior
combines data and prior information. Furthermore, the natural conjugate prior implies that the
prior can be interpreted as arising from a fictitious dataset (e.g. and play the same role in
(3.16) and (3.18) and, hence, can beinterpreted as a prior sample size).
It is useful to draw out the similarities, differences between what a Bayesian would do, and
what a frequentist would do. The latter might calculate and its variance, ( ) ,
andestimate by . The former might calculate the posterior mean and variance of (i.e.∗and

∗ ∗∗ ∑∗) and estimate ℎ = by its posterior mean, ∗ . These arevery similar
strategies, except for two important differences. First, the Bayesian formulae all combine prior
and data information. Secondly, the Bayesian interprets as a random variable, whereas the
frequentist interprets as a randomvariable.

The fact that the natural conjugate prior implies prior information enters inthe same
manner as data information helps with prior elicitation. For instance,when choosing particular
values for , ∑ , and it helps to know that isequivalent to the OLS estimate from an
imaginary data set of observations withan imaginary equal to(∑ ) and an imaginary

given by .

4.0 Results and Discussion
4.1 Results

The variance inflation factor for all the variables is as follows;( ) = 5.807767, ( ) = 109.514563, ( ) = 92.23301
Table 4.1: Summary of estimate of coefficient and standard error at sample size 20 - 120

Sample
size BAYES ESTIMATE OLS ESTIMATE RIDGE ESTIMATE

coef Std
deviation coef Std Error coef Std Error

=2020

= 25 25 7.1 698.15 20676.02 9502.78 100.34= 165 164.96 2.34 164.91 3.17 164.48 2.82= 150 150.06 1.16 150.47 12.45 155.68 1.36= 345 345.02 1.26 344.72 9.41 340.67 1.51

=4040

= 25 25 10.08 -264.07 18962.12 6063.21 131.09= 165 165 2.36 165.02 2.91 164.71 2.59= 150 150.04 1.15 149.87 11.42 153.62 1.25
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= 345 345 1.27 345.13 8.63 342.22 1.39

=6060

= 25 25 8.53 447.47 12432.24 5426.41 109.99= 165 165.08 1.63 165.06 1.9 164.81 1.7= 150 149.99 0.79 150.24 7.49 153.19 0.82= 345 344.95 0.88 344.76 5.66 342.47 0.91

=8080

= 25 25 9.56 -604.39 12234.45 4043.53 116.41= 165 165.07 1.59 165.12 1.87 164.89 1.67= 150 149.97 0.77 149.59 7.37 152.34 0.81= 345 344.96 0.85 345.24 5.57 343.11 0.9=10000

= 25 25 8.25 5.39 9349.61 3823.23 108.36= 165 164.95 1.22 164.95 1.43 164.76 1.28= 150 149.99 0.59 149.97 5.63 152.23 0.62= 345 345.03 0.66 345.04 4.25 343.28 0.69=12020

= 25 25 7.75 -76.8 7910.44 3645.4 94.15= 165 165.04 1.05 165.05 1.21 164.87 1.08= 150 149.99 0.51 149.93 4.76 152.13 0.52= 345 344.98 0.56 345.02 3.6 343.31 0.58

Table 4.2: Summary of estimate of coefficient and standard error at sample size 140 –200 500,
1000.

Sample
size BAYES ESTIMATE OLS ESTIMATE RIDGE ESTIMATE

Coef Std
deviation Coef Std error Coef Std error

=14040

= 25 25 9.71 -113.28 9193.91 3325.15 118.49= 165 164.99 1.22 165 1.41 164.83 1.25= 150 150.01 0.59 149.92 5.54 151.96 0.61= 345 345 0.65 345.07 4.18 343.48 0.68=16060

= 25 25 9.03 166.19 7929.53 3244.19 114.06= 165 165.02 1.06 165.01 1.21 164.86 1.08= 150 150.02 0.51 150.11 4.78 151.93 0.53= 345 344.99 0.57 344.92 3.61 343.51 0.58=18080

= 25 25 9.18 -206.9 7612.49 2768.65 113.31= 165 164.99 1.02 165.01 1.17 164.86 1.04= 150 150 0.49 149.86 4.59 151.63 0.51= 345 345 0.55 345.11 3.46 343.74 0.56
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=20000

= 25 25 8.82 -227.56 6931.2 2727.32 103.92= 165 165.02 0.93 165.04 1.06 164.89 0.95= 150 150.02 0.45 149.86 4.17 151.61 0.46= 345 344.99 0.5 345.1 3.15 343.74 0.51

=50000

= 25 25 8.96 25 4393.89 1893.03 110.45= 165 165.02 0.6 165.02 0.67 164.92 0.6= 150 149.99 0.29 149.99 2.65 151.1 0.3= 345 344.99 0.32 344.99 2 344.13 0.33

=100000

= 25 25 9.06 25 3134.79 1311.35 103.97= 165 164.98 0.43 164.98 0.48 164.91 0.43= 150 150 0.21 150 1.89 150.76 0.22= 345 345.01 0.23 345.01 1.43 344.42 0.23

Table 4.3: Summary of 95% confidence and credible interval for the estimators

Sample
size BAYES  95%  CREDIBLE INTERVAL

OLS   95%
CONFIDENCE

INTERVAL

RIDGE  95%
CONFIDENCE INTERVAL

Lower Upper Lower Upper Lower Upper=2020

= 25 14.16597 36.17456 -63301.8 24360.65 9290.082 9715.488= 165 159.1038 168.078 157.4136 170.8445 158.5006 170.4588= 150 145.903 150.4816 110.5315 163.3343 152.7959 158.5682= 345 343.4001 348.1928 335.1006 374.9946 337.4551 343.8773

=6060

= 25 10.71535 42.39604 -48860.8 948.7104 5206.075 5646.74= 165 163.8568 169.2768 165.0413 172.6727 161.4142 168.2089= 150 149.3212 151.8048 121.1434 151.1458 151.5473 154.8344= 345 342.6347 345.5541 343.2246 365.8922 340.6474 344.3002

=10000

= 25 10.76345 40.3885 -14766.5 22351.19 3608.133 4038.33= 165 162.28 167.3016 161.7387 167.4256 162.2273 167.2907= 150 149.4397 151.6747 141.4799 163.8375 151.0066 153.4618= 345 343.762 346.4126 334.9215 351.8133 341.9207 344.6457

=20000

= 25 7.558032 43.71414 -16502.7 10835.94 2522.372 2932.274= 165 163.5901 167.1153 163.4495 167.6381 163.0267 166.7561= 150 149.1336 150.986 140.0205 156.4877 150.7072 152.5223= 345 343.8519 345.7796 339.8815 352.323 342.7376 344.748
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Table 4.4: Mean square error of the estimators at various sample sizes
Sample Sizes BAYES MSE OLS MSE RIDGE MSE

20 3.33 1.32× 10 67235991
40 1.62 60055660 30204822
60 1.11 40863372 22146422
80 0.86 29947007 13710192

100 0.71 22829325 11558297
120 0.55 21264974 9871460
140 0.48 17336409 8464848
160 0.42 15317101 7756157
180 0.38 12908635 6250229
200 0.34 12767788 6159415
500 0.14 5109822 2668017

1000 0.07 2603927 1290459

Table 4.5: Mean square error of prediction for the estimators at various sample sizes
Sample Sizes BAYES MSEP OLS MSEP RIDGE MSEP

20 7213.086 7303.68 8029.317
40 4635.332 4650.295 4522.359
60 8911.436 8919.751 9087.504
80 12461.58 12468.18 12288.64

100 11809.74 11802.38 12185.98
120 11360.94 11369.32 11229.35
140 11345.92 11338.87 11496.92
160 10553.39 10551.4 10511.69
180 13365.38 13364.45 13314.26
200 11596.22 11586.63 11464.2

4.2   Discussion of Results
In this research, two frequentist methods (Ordinary Least Square (OLS) & Ridge

Regression (RR)) and Bayesian Regression were used to fit a set of collinear data. OLS
performed as expected due to the effect of collinearity existing between the predictors, RR also
produces a fairly precise estimate but the estimates were totally different from the true value
(Bias). The Bayesian regression which uses the prior as an ingredient to solve the problem of
collinearity produces the closest estimates to the true value and also precise. The above results
can be found in table 4.1. Increasing the sample size in table 4.2 improves the estimate of the
three estimators, OLS estimates and Bayesian estimates now converges to be the same, RR and
Bayesian precision also converges to be the same. Table 4.3 presents the 95% confidence and
credible interval as in the case of frequentist and Bayesian respectively. Due to the imprecise
standard errors of the frequentists estimate, the OLS and RR produces wide confidence
intervals i.e if we are to test the hypothesis of significance of , the hypothesis of non-
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significance would not be rejected. The Bayesian credible intervals interpreted as the
probability that the unknown parameter will fall in the interval were narrower compared to the
frequentist counterparts.

Furthermore, Table 4.4 presents the Mean Square Error MSE which is used to measure
the average closeness of the estimators to the true values, it was observed that the Bayesian
estimator produce << lower MSE compared to OLS and RR. Although RR MSE is approximately
half of the OLS MSE, but its better is not the best.

To access the predictive ability of the estimators, Mean Square Error of Prediction was
used, the results were presented in table 4.5. It was observed that the three estimators
performed extremely the same, with slight better performance from the Bayesian estimators in
some cases. All the results discussed above were also confirmed using box & whisker plots and
line graphs.

5.2     Conclusion
In this study a simple way of modelling collinear data under simulation approach was

presented. It was observed that modelling collinearity in a full Bayesian using a Normal-Gamma
conjugate prior have improved the precision of the estimates and the efficiency of the
inferences about the parameters.
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