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Abstract: This study presents a novel hybridized approach that combines the Crow Search Algorithm (CSA) and 
Smell Agent Optimization (SAO) algorithm to determine the optimal location and size for integrating Distributed 
Generation (DG) into power networks. The proposed method is applied to the 11kV GRA feeder of the Abuja 
Electricity Distribution Company (AEDC), demonstrating remarkable outcomes. The results reveal a significant 
49.47% reduction in power losses and an impressive 67.95% respectively overall enhancement in voltage profiles 
after the installation of three DGs. These findings highlight the performance of the hybrid approach for power 
delivery improvement on a Nigerian network. 
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1. INTRODUCTION 

The depletion of our energy sources is rapidly accelerating due to increasing pressure and the 
continually growing population. As a result, there is an urgent need to explore innovative and 
improved methods for energy generation. It is imperative to discover environmentally friendly 
and self-sustaining approaches that can effectively meet the escalating demand for energy 
resulting from human activities. 

Finding the ideal location and size for Distributed Generators (DGs) in a distribution network 
can be quite challenging. Typically, the methods employed for locating and sizing DGs in such 
networks consist of analytical and heuristic approaches. 

When it comes to the challenge of achieving optimal allocation of DGs, the analytical method 
may seem simple to understand and implement, but it is computationally intensive and time-
consuming. On the other hand, while meta-heuristic methods are known for their robustness, 
they often struggle to produce optimal solutions. Meta-heuristic methods have gained 
recognition as effective and potent tools for addressing intricate engineering optimization 
problems. 

Meta-heuristic methods operate on a distinct principle compared to traditional optimization 
methods. Instead of relying on derivative or gradient information, these methods only require 
the function value of the problem. Initially, these methods generate function values by 
employing random operators across various solution spaces, a process known as exploration or 
diversification. Subsequently, the algorithm thoroughly explores these solution spaces in search 
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of the optimal solution through exploitation or intensification. Striking a balance between 
exploration and exploitation poses a significant challenge to avoid getting trapped in local 
optima. To address this issue, the most common approach involves dynamic parameter 
selection or the fusion of advantageous characteristics from two or more algorithms 
(Salawudeen et al., 2021) 

The principle of these methods differs from traditional optimization methods, as they only rely 
on function values rather than derivative or gradient information of the problem. These function 
values are initially generated using random operators across different solution spaces, a process 
known as exploration or diversification. Subsequently, the algorithm thoroughly searches these 
solution spaces for the optimal solution through exploitation or intensification. Striking a 
balance between exploration and exploitation is a major challenge that must be carefully 
considered to avoid getting trapped in local optima. The most common approach to address 
this problem is through dynamic parameter selection or by hybridizing the positive features of 
two or more algorithms (Salawudeen et al., 2021) 

Numerous researchers have made significant contributions in the pursuit of finding the best 
sizing and placement of DG units through the utilization of different algorithms. In one study, 
Moein (2014) employed a clonal algorithm to determine the optimal placement of DGs in radial 
distribution systems. Another study by Karar et al. (2014) introduced a combined analytical 
and complete AC optimal power flow approach to calculate the optimal location and size of 
DGs, considering the complete AC system. These researchers have made valuable 
contributions to the development of efficient methods for determining the optimal sizing and 
placement of DGs in distribution power systems. In addition, Raghab et al. (2016) introduced 
the Cat Swarm Optimization (CSO) algorithm and Parallel Cat Swarm Optimization (PCSO) 
algorithm for allocating distributed generation (DG) units in distribution networks. Their 
objective was to minimize total generation costs, power losses, and emissions while improving 
voltage stability. Similarly, Savya et al. (2016) utilized the artificial bee colony (ABC) 
algorithm to determine the optimal sizing and placement of DG units. The proposed algorithm 
was tested on the IEEE 33 bus system to assess its reliability in reducing total system real 
power loss and enhancing voltage profiles. These studies contribute to the advancement of 
methodologies for optimizing DG allocation in distribution systems, considering multiple 
objectives and system performance.  

Furthermore, Jagan et al. (2017) developed a hybrid approach combining Genetic Algorithm 
and Particle Swarm Optimization for the optimal deployment of Distribution Generation units. 
They aimed to find the best allocation and sizing strategy considering multiple objectives. In a 
separate study, Abdulhamid (2018) proposed a PSO-based technique for the allocation and 
sizing of DGs in a radial distributed system. The objective was to minimize voltage deviation 
and total power loss. Simulation results showed a significant reduction in total power loss 
(89.83%) when three DGs were allocated with sizes ranging from 0.2233MW to 0.0227MW. 
The proposed technique was evaluated using the standard IEEE-33 radial test system. However, 
a comparison with other meta-heuristic techniques was not provided in the study. 

Anand et al. (2021) introduced the Crow search algorithm (CSA) for the optimal allocation of 
multiple DGs with different types in distribution networks. Their objective was to minimize 
active power loss. The proposed method was evaluated using the IEEE-33 and 69 bus test 
systems, and the results were compared with the improved analytical (IA) and particle swarm 
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optimization (PSO) methods. The findings demonstrated that the proposed CSA method 
outperformed the existing PSO and IA methods. 

The strength of the Crow Search Algorithm (CSA) lies in its ability to efficiently avoid getting 
trapped in local optima when dealing with complex search spaces in multimodal optimization 
problems. However, the exploitation phase of CSA is not highly effective. To enhance the 
results, it is recommended to hybridize CSA with an algorithm that excels in exploitation. 

In this paper, the deployment and sizing of distributed generation units will be optimized using 
a hybrid approach that combines the Crow Search Algorithm and the Smell Agent Optimization 
Algorithm. 

2. MATERIALS AND METHODS 

2.1 Stages of research 

This research study was conducted in four distinct stages. The initial stage involved gathering 
relevant line data, bus data, and the single-line diagram of the 11kV GRA Feeder of Abuja 
Electricity Distribution Company in Minna. Power flow analysis was performed to determine 
the system's voltage profile and power losses, with these values serving as the baseline.The 
second stage focused on the development of a MATLAB program for the Hybrid Crow Search 
Algorithm and Smell Agent Optimization. This program aimed to identify the optimal sizes and 
locations of multiple DGs within the network. The results obtained from this optimization process 
provided valuable information on the most suitable DG sizes and placent locations.  

In the third stage, the identified DGs were placed at the designated buses, and an additional load flow 
analysis was conducted to evaluate the impact of the DGs on distribution line losses and voltage profiles 
at various buses. 

The final stage involved a comparative analysis of the results obtained from load flow analyses using 
different numbers of DGs.  

2.2 Optimal placement of DG 
To optimally determine locations of multiple DGs, hybrid Crow Search Algorithm and Smell 
Agent Optimization was adopted. The hybridized algorithm was used in realizing the optimal 
locations and sizes of the DGs. 
2.3 Hybrid Crow Search Algorithm and Smell Agent Optimization 

The step-by-step procedures for the development and evaluation of the hybrid CSA-SAO 
algorithm are outlined as follows: 

i. Development of the Hybrid Crow Search Algorithm and Smell Agent Optimization: 

a. The standard Crow Search Algorithm was implemented. 

b. The best and worst positions of the crows were determined based on the evaluation of their 
fitness. 

c. The hybrid CSA-SAO was modeled by incorporating the trailing mode behavior from SAO, 
ensuring that all crows follow the position of the best crow discovered thus far. 

ii. Determination of the effectiveness of the Hybrid approach for optimal location and sizing 
of distributed generators: 



InternaƟonal Academic Journal of InformaƟon, CommunicaƟon, Technology & Engineering 
 

Page | 36  
 

a. The optimization function was formulated, considering the objective of minimizing power 
loss and improving voltage. 

b. Constraints for the optimization were formulated, taking into account network control 
variables, voltage limits, generation limits, and other relevant factors. 

c. The formulated objective function was optimized using the developed hybrid algorithm from 
step (i) above. 

2.4 Problem Formulation  

The problem formulation contains the objective functions and constraints of the Smell Agent 
Optimization Algorithm in order to solve the optimization problem. 

2.4.1 Objective Functions Formulation 

The objective functions in this work are to minimize power losses and improve voltage profiles 
across the distribution line length. 

The test system used to verify the effectiveness of the technique is described below; 

To minimize a function consisting of some parameters, the general function is written as a 
summation of those parameters                                                                                            

    𝑓 = 𝑓ଵ + 𝑓ଶ + ⋯ + 𝑓ே = ∑ 𝑓௜
ே
௜ୀଵ            

(1)  

2.4.1.1 The parameter of the DG size 

It is vital that the optimal DG size be deployed on the network buses and is given by equation 
(2) 

                   where;                                                𝑓ଵ = ∑ 𝑃஽ீ೔

ே
௜ୀଵ                                                         (2)  

Where, 𝑃஽ீ೔
 is the DG capacity of the 𝑖𝑡ℎ bus, N is the set of possible locations. 

2.4.1.2 Parameter of the total power loss of the network. 

The power loss of the network is calculated in equation (3)  

𝑓ଶ = 𝑓(𝑃௟௢௦௦) = 𝑃௟௢௦௦(3) 
Here, 𝑃௟௢௦௦is the total power loss of the network. Real and reactive power loss analysis will be 
evaluated for the system with and without DG. The loss in the system can be calculated using 
equation (4) (Witchit, et. al., 2007) also called the exact loss formula. 

  
   2 1 1

N N

ij i j i j ij i j i ji j
f PP QQ Q P PQ 

 
                           

(4)                        

Where,    𝛼௜௝ =
ோ೔ೕୡ୭ୱ (ఋ೔ିఋೕ)

௏೔௏ೕ
            

(5)               

                  
𝛽௜௝ =

ோ೔ೕୱ୧୬ (ఋ೔ିఋೕ)

௏೔௏ೕ
            

(6)                          

𝑃௜and𝑄௜ are net real and reactive power injection in bus 𝑖, respectively. 
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𝑅௜௝is the resistance between buses 𝑖 and 𝑗 

𝑉௜and𝛿௜ are the voltage and angle at bus 𝑖 respectively. 

According to the preceding equations, the final objective function to be minimized is 
acquired as follows      𝑓 = 𝑓ଵ + 𝑓ଶ    
         (7)  

Substituting the values of 𝑓ଵ and 𝑓ଶ into equation (7)  yields: 

        𝑓 = ∑ 𝑃஽ீ೔

ே
௜ୀଵ + ∑ ∑ ൣ𝛼௜௝൫𝑃௜𝑃௝ + 𝑄௜𝑄௝൯ + 𝛽௜௝(𝑄௜𝑃௝ + 𝑃௜𝑄௝)൧ே

௝ୀଵ
ே
௜ୀଵ                     

(8) 

2.4.2     Constraints 

Constraints are issue of great importance in optimization procedures. An optimal answer is the 
answer that satisfies all of the constraints of the optimization problem. The following 
constraints will be considered while siting and sizing DGs. 

2.4.2.1   Power Injection constraints 

This is given by 

∑ 𝑃஽ீ೔
≤ ∑ 𝑃஽೔

+ 𝑃௅
ே
௜ୀଵ

ே
௜ୀଵ           
(9)                        

Where, 𝑃௅is the real power loss in the system 

𝑃஽ீ೔
is the real power generation of DG at bus 𝑖. 

𝑃஽೔
is the power demand at bus 𝑖. 

2.4.2.2 Voltage constraints 

The variation range of all of the distribution buses should be within a specified limit. The 
voltage constraint is given below 

                                                 |𝑉௜|
௠௜௡ ≤ 𝑉௜ ≤

|𝑉௜|
௠௔௫                                                                      (10) 

Here,  
                                         |𝑉௜|

௠௜௡=0.95(pu)                                                       
(11) 

                                                |𝑉௜|
௠௔௫ = 1.05(pu)                     

(12) 
Voltages lower or higher than (±6%) exposes many power consumers’ appliances to operation 
failure and damages (Mark et al., 2017) 

2.4.2.3   Summation of the DG sizes. 

The sum of all the active power produced from all the DG units in the network should be less 
or equal to 20% of substation power  

      ∑ DGP
௜

≤ 20%𝑃௦௨௕௦௧௔௧௜௢௡
ே
௜ୀଵ                     

(13) 

Here, 𝑁is the number of DG units. 
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DGP
௜
is the DG active power 

2.4.2.4 Total Power Balanced Constraint; 

                                             
lossesloadsubstation

N

i
DG PPPP 

1

                    

(14)  

Where,  DGP  is the Power supply by DG 

 substationP is the Power supply from substation 

 loadP is the Power delivered to the network connected loads 

 lossesP is the Power losses on the network 

 N is the Number of distributed generators connected 
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Figure 1: Flowchart of HCSA-SAO 

3. SIMULATION RESULTS AND DISCUSSION 

3.1 Effect of DG placement using the proposed hybrid algorithm (HCSA-SAO) 
The hybrid method was used for optimal allocation of DG for the selected GRA feeder. Optimal 
DG placement was done on the.  The total real power loss after optimum DG placement is 
presented in table 1. The average time of simulation was also noted and presented. 
Table 1: Effect of DG placement on network losses reduction for GRA feeder using HCSA-
SAO 

Number 
of DGs 

Location 
(Bus 
number) 

DG 
size 
(MW) 

Total 
Installed 
Capacity 
(MW) 

Loss 
without 
DG 
(kW) 

Loss 
With 
DG 
(kW) 

% Loss 
Reduction 

Simulation 
Time (s) 

        
2 3 0.17 0.36  93.25 48.84 7.22 

 6 0.19      
    182.3    

 6 0.19      
3 12 0.24 0.72  92.11 49.47 8.25 

 18 0.29      

 
The table presents results related to the integration of Distributed Generators (DGs) into the 
distribution network, specifically focusing on different scenarios with varying numbers of 
DGs, their locations (bus numbers), DG sizes, total installed capacity, power loss without DGs, 
power loss with DGs, percentage loss reduction, and simulation time. 
The results indicate that both the location and size of DGs play a significant role in determining 
the extent of power loss reduction. Different combinations of DG locations and sizes yield 
varying levels of loss reduction. 
The simulation time is provided in the table, and it's noticeable that the addition of more DGs 
and their optimization increases the computational load, as reflected in the slightly longer 
simulation times for scenarios with more DGs 
Figures 2 and 3 display real power loss plots after successfully conducting power flow analysis 
on the GRA distribution network. These plots represent the best fitness function against the 
number of iterations specifically for the Hybrid Algorithm. The variations in the number of 
optimally installed Distributed Generators (DGs) are depicted in these Figures. 
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Figure 2: Real power loss of GRA distribution network after introducing 2 DGs 
optimally using HCSA-SAO 

 
Figure 3: Real power loss of GRA distribution network after introducing 3 DGs 
optimally using HCSA-SAO 

 
 
3.2 Voltage profile after DG allocation using the proposed hybrid algorithm (HCSA-
SAO) 
The base case and improved voltage magnitudes were plotted against their respective bus 
numbers in order to see the improvement in voltage profile after DG location and sizing was 
done using the proposed hybrid algorithm. 
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The average base case voltage is 0.8512. The overall voltage profile improvement after 
introduction of 2 and 3 numbers of DG is 50.16% and 67.95% respectively. 

The voltage profiles obtained after integrating 2 and 3 DGs are shown in Figures 4, and 5  

 

Figure 4: Voltage Profile for GRA Distribution Network after 2 DGs installation Using 
HCSA-SAO 

 

Figure 5: Voltage Profile for GRA Distribution Network after 3 DGs installation Using 
HCSA-SAO 
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The lower solid line, representing the base case, serves as a reference point, indicating the 
initial voltage profile without any Distributed Generators (DGs) in the network. It represents 
the existing conditions of the distribution network. 

The dashed line, which represents the Hybrid Algorithm, depicts how the voltage profile 
improves as the number of DGs increases. This line showcases the impact of the Hybrid 
Algorithm on enhancing voltage profile within the distribution network. 

In general, it can be observed that the MATLAB-modeled network clearly illustrates that 
almost all buses (42 buses) experienced acceptable voltage drops of more than 5% during Load 
Flow Analysis when examining the GRA Feeder without DG installation In contrast, after 
integrating a maximum of 3 DGs into the same feeder, it was observed that 20 buses out of the 
total number of buses exhibited voltage drops exceeding 5% during Load Flow Analysis. 
Consequently, the simulation with DGs showcased substantial enhancement in the network's 
voltage profile. These findings underscore the algorithm's effectiveness in enhancing voltage 
profiles and diminishing power losses. 

4 CONCLUSIONS 
The research successfully conducted a power flow analysis to determine the current voltage 
profile and power losses within the 11 kV GRA feeder of the Abuja Electricity Distribution 
Company (AEDC). The resulting insights provide valuable perspectives on the present 
condition of the distribution network, indicating that all buses, except one, experienced 
acceptable voltage drops of more than 5%. The average voltage profile is 0.8512 pu, with active 
power losses of 182.3 kW. These findings facilitate an evaluation and open the possibility of 
enhancing voltage levels and implementing power loss mitigation strategies to improve 
operational efficiency. 

Finally, the study conducted an examination of the influence of optimally positioned 
Distributed Generators (DGs) within the 11 kV GRA feeder. Employing the developed hybrid 
algorithm, the analysis centered on evaluating enhancements in voltage profiles and decreased 
power losses. This investigation not only gauged the algorithm's effectiveness but also 
illuminated the advantages of strategically located DGs in terms of enhancing voltage profiles 
and mitigating power losses within the distribution network. The results demonstrated a 
49.47% reduction in losses and a 67.95% improvement in the overall voltage profile after 
introducing 3 DGs within the GRA feeder. 
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